以左心室为例说明心脏心脏的泵血过程视频中心室容积、压力及瓣膜的启闭和血流方向的变化

扫描二维码关注考拉官微扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
下载作业帮安装包
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
一个心动周期中,心脏的压力、容积、瓣膜启闭和血流方向各有何变化
扫二维码下载作业帮
拍照搜题,秒出答案,一键查看所有搜题记录
1.心室收缩期 包括等容收缩期、快速射血期和减慢射血期.(1)等容收缩期(period of isovolumic contraction):产生第一心音.特点:室内压大幅度升高,且升高速率很快.这一时相持续0.05s左右.房内压<室内压<动脉压;房室瓣关闭,半月瓣关闭;血液存于心室,心室容积不变.(2)快速射血期(period of rapid ejection):\x0b特点:时间占射血期1/3左右,射血量占总射血量的2/3左右.持续0.1s左右.由于大量血液进入主动脉,主动脉压相应增高.房内压<室内压>动脉压;房室瓣关闭,半月瓣开放;血液由心室快速射入动脉,约占总射血量的70%,心室容积迅速缩小.(3)减慢射血期(period of slow ejection):特点:时间占射血期2/3左右,约0.15s.心室内压和主动脉压都相应由峰值逐步下降.室内压逐渐下降,略低于大动脉压,但仍高于房内压;房室瓣关闭,半月瓣开放.血液继续由心室缓慢射入动脉,约占总射血量的30%,心室容积继续缩小.2.心室舒张期\x0b分为等容舒张期、快速充盈期、减慢充盈期.(l)等容舒张期(period of isovolumic relaxation):产生第二心音.特点:心室内压急剧下降.房室瓣和动脉瓣均关闭,持续时间约 0.06s—0.08s.房内压<室内压<动脉压;房室瓣关闭,半月瓣关闭;血液存于心房,心室容积不变.(2)快速充盈期(period of rapid filling):占舒张期的前1/3,占总充盈量的2/3,房内压>室内压<动脉压;房室瓣开放,半月瓣关闭;血液由心房快速流入心室,心室容积增大.(3)减慢充盈期(period of reduced filling):约 0.22s,占总充盈量的1/3.房、室间的压力梯度逐渐减小,血液充盈速度减慢,心室容积进一步增大.此后,进入下一个心动周期.心房开始收缩并向心室射血,心室充盈又快速增加.
为您推荐:
其他类似问题
扫描下载二维码华中科技大学同济医学院生理学考博2001 年
试述神经-肌肉接头处兴奋的传递过程,并分析影响兴奋传递的因素(20分) [答案] 神经-肌接头的传递过程:动作电位以局部电流的形式传导到神经末梢→Ca2+通道开放,进入轴突末梢,中和膜内表面和囊泡表面的负电荷,降低末梢内轴浆黏度,激活某些收缩蛋白,促使囊泡向接头前膜移动、融合、破裂并量子式释放递质Ach→Ach经接头间隙扩散到终板膜→与终板膜上上N2受体结合→该受体本身属化学门控离子通道,开放后使得终板膜Na+内流大于K+外流→终板电位去极化而爆发动作电位→终板电位刺激邻近的肌膜去极化达阈电位→肌膜上电压门控钠通道开放,Na+内流而产生肌膜动作电位,从而完成了兴奋在神经-肌肉接头处的传递过程。 Ach的消除:Ach发挥作用后迅速被附近的胆碱脂酶水解而失活。 影响兴奋传递的因素主要有:1.影响Ach的释放:细胞外镁离子浓度或细胞外钙离子浓度降低均能影响Ach的释放,其作用机制为:Mg++与Ca++竞争,使得钙离子内流减少,递质释放减少;钙离子内流减少,递质释放量减少。 影响递质与受体的结合:例如肉毒中毒,其会抑制递质的释放;肌无力综合征,其自身免疫力抗体会破坏神经末梢的钙离子通道;重症肌无力,其自身免疫性抗体破坏了终板膜上的N2受体与通道。 影响Ach的降解:例如筒箭毒会阻断终板膜上的N2受体与Ach结合;而新斯的明和有机磷中毒均抑制胆碱酯酶活性。
二、以左心为例,试述心脏将血液泵入动脉的过程,并试述泵血过程中心室内压力、容积、瓣膜开关和血流的变化。(20分)(在每个心动周期中心脏的压力、容积、瓣膜启闭和血流方向各有何变化?) [答案]在每一个心动周期中,包括收缩和舒张两个时期,每个时期又可分为若干时相。以心房开始收缩作为描述一个心动周期的起点。⑴心房收缩期:心房开始收缩之前,心脏正处于全心舒张期,心房和心室内压都比较低。但心房压相对高于心室压,房室瓣处于开启状态,而心室内压远比动脉压为低,故半月瓣处于关闭状态。心房开始收缩,心房容积缩小,内压升高,心房内血液被挤入已经充盈了血液但仍然处于舒张状态的心室,使心室的内压升高,血液充盈量进一步增加。心房收缩持续约0.1s后进入舒张期。⑵心室收缩期:①等容收缩期:心房进入舒张期后不久,心室开始收缩,心室内压开始升高,当室内压超过房内压时,房室瓣关闭。这时,室内压力开始升高,半月瓣仍然处于关闭状态,心室成为一个封闭腔,血液暂时停留在心室内,所以心室容积并不改变。②射血期:等容收缩期室内压大幅度升高超过主动脉压时,半月瓣开放,等容收缩期结束,进入射血期,射血期的最初1/3左右时间内,心室肌强烈收缩,由心室射入主动脉的血量很大,流速很快,心室容积明显缩小,室内压上升达峰值,称为快速射血期。随后,心室内血液减少,心室肌收缩强度减弱,射血速度逐渐减慢,这段时期称为减慢射血期。在这个时期内,心室内压由峰值逐步下降且略低于主动脉压,但心室内血液因为受到心室肌收缩的作用而具有较高的动能,依其惯性作用逆着压力梯度射入主动脉。⑶心室舒张期:①等容舒张期:心室开始舒张后,室内压下降,主动脉内的血液逆流向心室,推动半月瓣关闭,这时室内压仍明显高于心房压,房室瓣依然处于关闭状态,心室又成为封闭腔。此时,心室肌舒张,室内压以极快的速度大幅度下降,但容积并不改变。②心室充盈期:当室内压降到低于心房压时,房室瓣开启,血液顺着房―室压力梯度由心房流向心室,血液流速较快,心室容积增大,称为快速充盈期。在此期间进入心室内的血液约为总充盈量的2/3。之后,快速充盈期后,心室内已有相当的充盈血量,大静脉、房室间的压力梯度逐渐减小,血液以较慢的速度继续流入心室,心室容积继续增大,称减慢充盈期。
三、切断颈动脉体和主动脉体的传入神经前后,分别吸入5%的二氧化碳,对呼吸各有何影响?并分析其影响机制?(20分) [答案] ①切断颈动脉体和主动脉体的传入神经前后,分别吸入5%的二氧化碳,均能使呼吸运动加深加快。因为二氧化碳兴奋呼吸是通过刺激中枢化学感受器和外周化学感受器两条途径而起作用的,并以刺激中枢化学感受器的作用为主:切断前吸入CO2,血中CO2浓度增加→CO2进入脑内生成H2O3解离释放出H+,刺激延髓化学感受器→兴奋呼吸中枢→呼吸肌活动增加→呼吸加深加快。其次,血中CO2通过刺激主动脉体和颈动脉体外周化学感受器,冲动分别沿窦神经和迷走神经传入延髓,反射性引起呼吸加深加快。切断颈动脉体取消了二氧化碳刺激外周化学感受器的作用后,二氧化碳仍能通过刺激中枢化学感受器而兴奋呼吸运动。 ②低氧或缺氧(吸入氮气),只能通过兴奋外周化学感受器,转而使呼吸运动增强,因此在切断家兔颈动脉体前吸入氮气(缺氧)可使呼吸运动增强,切断后吸入氮气增强呼吸运动的作用则不明显。 ③注射乳酸(增加H)加深加快作用机理与上相似,但由于H不易进入脑内,因此主要通过刺激外周化学感受器而起作用。 ④吸入纯氮(缺氧),加深加快血中PO2氧分压下降刺激主动脉体和颈动脉体化学感受器而起作用 ⑤长管呼吸(增大无效腔),呼吸加深, PCO2 增加,机制同①;PO2下降,机制同②;还有第三个原因:呼吸机本体感受器反射的影响:由于气道加长→气道阻力增加→呼吸机肌梭的兴奋性增加→脊髓运动神经元兴奋性增加→呼吸机运动增强。由于呼吸阻力增加,呼吸频率可能变慢。 ⑥切断双侧迷走神经,加深变慢肺牵张反射(肺扩张反射和肺萎缩反射)的肺扩张反射的作用在于抑制呼吸过长过深,促使吸气及时转为呼气,切断了双侧迷走神经后,中断了肺牵张反射的转入通路,肺扩张反射的生理作用被取消 ⑦电刺激迷走神经传入端呼吸停止肺牵张反射引起呼吸抑制,肺萎缩反射引起吸气增强,两者的转入纤维都在迷走神经中上行。电刺激迷走神经传入端影响呼吸中枢,导致呼吸运动改变;由于电刺激是持续存在的,故呼吸运动会停止。
四、刺激胃酸分泌的内源性物质有哪些?试述消化期间胃液分泌增加的调节及机制?(20分) [答案]刺激胃液分泌的内源性物质有:1乙酰胆碱2促胃液素3组胺;其中,乙酰胆碱和促胃液素可以促进组胺的产生和释放。刺激胃酸分泌的其他因素有钙离子、低血糖、咖啡因和酒精。 消化器胃液分泌的调节:进食后胃液分泌的调节,可按照食物机器相关感受器的所在部位人为的分为以下三期: (1).头期胃液分泌:此期胃液分泌包括条件反射和非条反射两种机制。传出神经是迷走神经,迷走神经兴奋刺激胃液分泌可通过两种机制:一是直接刺激壁细胞;二是刺激G细胞和ECL细胞(肠嗜铬样细胞),分别释放促胃液素和组胺,间接促进胃液分泌。支配壁细胞的ECL细胞的迷走神经节后纤维释放的递质是Ach,其作用可被阿托品阻断;而支配G细胞的迷走神经节后纤维的递质是促胃液素释放肽,其作用不能被阿托品所阻断。头期胃液分泌受情绪和食欲的影响很大,其分泌量占整个消化期分泌量的约30%,胃液的酸度和胃蛋白酶含量均很高。 (2)胃期胃液分泌:食物入胃后,食物的机械和化学刺激通过以下三种机制继续引起胃液分泌:①食物机械性扩张刺激胃底、胃体部和幽门部的感受器,经迷走-迷走神经反射,直接或间接通过促胃液素,作用于壁细胞,引起胃液分泌;②扩张幽门部,通过局部神经丛使G细胞释放促胃液素;③蛋白质的消化产物肽和氨基酸直接作用于G细胞,使后者释放促胃液素,引起壁细胞分泌。胃期的胃液分泌量占整个消化期分泌量的60%,胃液的酸度高,但胃蛋白酶的含量比头期少。 (3)肠期胃液分泌:食糜进入十二指肠后,继续引起胃液分泌,其分泌量占整个消化期胃液分泌量的10%,肠期胃液分泌的主要机制是食物的机械扩张刺激以及消化产物作用于十二指肠黏膜,后者释放促胃液素,促进胃液分泌。
五、正常人排出的终尿渗透压可以是高渗,也可以是低渗,阐明其变化机制。(20分) [答案]髓质部远曲小管和整个集合管周围的组织间液呈高渗状态,在ADH分泌增加时,远曲小管和集合管对水的通透性增加,水因管外高渗而被大量重吸收,尿液被浓缩而形成高渗尿;相反,若无ADH存在时,远曲小管和集合管对水不宜通透,水就不能被重吸收,而小管液中钠离子等可被继续主动重吸收,从而形成低渗尿。
华中科技大学同济医科大学2002年生理学(博士) 二、问答题 1、以左心室为例,阐明心动周期中心室压力、容积、血流、房室瓣和动脉瓣的变化(20分) 在每一个心动周期中,包括收缩和舒张两个时期,每个时期又可分为若干时相。以心房开始收缩作为描述一个心动周期的起点。⑴心房收缩期:心房开始收缩之前,心脏正处于全心舒张期,心房和心室内压都比较低。但心房压相对高于心室压,房室瓣处于开启状态,而心室内压远比动脉压为低,故半月瓣处于关闭状态。心房开始收缩,心房容积缩小,内压升高,心房内血液被挤入已经充盈了血液但仍然处于舒张状态的心室,使心室的内压升高,血液充盈量进一步增加。心房收缩持续约0.1s后进入舒张期。⑵心室收缩期:①等容收缩期:心房进入舒张期后不久,心室开始收缩,心室内压开始升高,当室内压超过房内压时,房室瓣关闭。这时,室内压力开始升高,半月瓣仍然处于关闭状态,心室成为一个封闭腔,血液暂时停留在心室内,所以心室容积并不改变。②射血期:等容收缩期室内压大幅度升高超过主动脉压时,半月瓣开放,等容收缩期结束,进入射血期,射血期的最初1/3左右时间内,心室肌强烈收缩,由心室射入主动脉的血量很大,流速很快,心室容积明显缩小,室内压上升达峰值,称为快速射血期。随后,心室内血液减少,心室肌收缩强度减弱,射血速度逐渐减慢,这段时期称为减慢射血期。在这个时期内,心室内压由峰值逐步下降且略低于主动脉压,但心室内血液因为受到心室肌收缩的作用而具有较高的动能,依其惯性作用逆着压力梯度射入主动脉。⑶心室舒张期:①等容舒张期:心室开始舒张后,室内压下降,主动脉内的血液逆流向心室,推动半月瓣关闭,这时室内压仍明显高于心房压,房室瓣依然处于关闭状态,心室又成为封闭腔。此时,心室肌舒张,室内压以极快的速度大幅度下降,但容积并不改变。②心室充盈期:当室内压降到低于心房压时,房室瓣开启,血液顺着房―室压力梯度由心房流向心室,血液流速较快,心室容积增大,称为快速充盈期。在此期间进入心室内的血液约为总充盈量的2/3。之后,快速充盈期后,心室内已有相当的充盈血量,大静脉、房室间的压力梯度逐渐减小,血液以较慢的速度继续流入心室,心室容积继续增大,称减慢充盈期。
一、名词解释(3分×5) 1、阈电位:threshold potential 当膜电位去极化达到某一临界值时,就出现膜上的Na大量开放,Na大量内流而产生动作电位,膜电位的这个临界值称为阈电位。 2、静息心指数:以单位体表面积(平方米)计算心输出量,称为心脏指数(心指数 cardiac index),-而安静和空腹情况下的心指数,称之为静息心指数 3、肾小球滤过率:肾小球滤过率(GFR,glomerularfiltration rate)是指单位时间内两肾生成滤液的量,正常成人为125ml/min左右。 4、潮气量:是指平静呼吸时每次吸入或呼出的气量。 5、胃排空:如果在一次兴奋的有效不应期后、正常的窦性节律到来之前,心肌受到一次额外的刺激,心室可产生一次窦性节律以外的收缩活动,由于这次收缩发生在正常节律收缩之前,故称为期前收缩。
2、加大家兔呼吸道解剖无效腔后,对家兔呼吸有何影响,并分析其机制。(20分) [答案] 长管呼吸时呼吸加深加快。一方面长管增大了无效腔,降低了气体的更新率,肺泡气中PO2降低和PCO2升高,从而使血液中PO2降低和PCO2升高,通过化学感受性反射使呼吸运动加深加快。另一方面,长管使气道加长,加大了气道阻力,通过呼吸肌本体感受性反射使呼吸运动加强。 因为二氧化碳兴奋呼吸是通过刺激中枢化学感受器和外周化学感受器两条途径而起作用的,并以刺激中枢化学感受器的作用为主:切断前吸入CO2,血中CO2浓度增加→CO2进入脑内生成H2O3解离释放出H+,刺激延髓化学感受器→兴奋呼吸中枢→呼吸肌活动增加→呼吸加深加快。其次,血中CO2通过刺激主动脉体和颈动脉体外周化学感受器,冲动分别沿窦神经和迷走神经传入延髓,反射性引起呼吸加深加快。 呼吸机本体感受器反射的影响:由于气道加长→气道阻力增加→呼吸机肌梭的兴奋性增加→脊髓运动神经元兴奋性增加→呼吸机运动增强。由于呼吸阻力增加,呼吸频率可能变慢。
试述神经-肌肉(横纹肌)接头处兴奋的传递过程,并说明哪些因素影响传递的过程?(25分) [答案] 神经-肌接头的传递过程:动作电位以局部电流的形式传导到神经末梢→Ca2+通道开放,进入轴突末梢,中和膜内表面和囊泡表面的负电荷,降低末梢内轴浆黏度,激活某些收缩蛋白,促使囊泡向接头前膜移动、融合、破裂并量子式释放递质Ach→Ach经接头间隙扩散到终板膜→与终板膜上上N2受体结合→该受体本身属化学门控离子通道,开放后使得终板膜Na+内流大于K+外流→终板电位去极化而爆发动作电位→终板电位刺激邻近的肌膜去极化达阈电位→肌膜上电压门控钠通道开放,Na+内流而产生肌膜动作电位,从而完成了兴奋在神经-肌肉接头处的传递过程。 Ach的消除:Ach发挥作用后迅速被附近的胆碱脂酶水解而失活。 影响兴奋传递的因素主要有:1.影响Ach的释放:细胞外镁离子浓度或细胞外钙离子浓度降低均能影响Ach的释放,其作用机制为:Mg++与Ca++竞争,使得钙离子内流减少,递质释放减少;钙离子内流减少,递质释放量减少。 影响递质与受体的结合:例如肉毒中毒,其会抑制递质的释放;肌无力综合征,其自身免疫力抗体会破坏神经末梢的钙离子通道;重症肌无力,其自身免疫性抗体破坏了终板膜上的N2受体与通道。 影响Ach的降解:例如筒箭毒会阻断终板膜上的N2受体与Ach结合;而新斯的明和有机磷中毒均抑制胆碱酯酶活性。 4、一正常人一次大量出汗(约1000Ml)而没有饮水,问其尿量、渗透压有何变化?并分析其变化机制(20分) [答案] 汗为低渗溶液,大量出汗而饮水过少时,尿液排出量减少,其渗透压升高。大量出汗:(1)组织液晶体渗透压升高,水的渗透作用使血浆晶体渗透压也升高,下丘脑渗透压感受器兴奋。(2)血容量减少,心房及胸内大静脉血管的容积感受器对视上核和旁室核的抑制作用减弱。上述两种途径均使视上核和旁室核合成和分泌ADH增加,血液中ADH浓度升高,使远曲小管和集合管对水的通透性增加,水重吸收增加,尿量减少,尿渗透压升高。此外,大量出汗,还可能使血浆胶体渗透压升高,肾小球有效滤过压降低,原尿生成减少,尿量减少。
同济医科大学2003年生理学(博士) 科目代码:801 一、试述神经细胞静息电位产生的机制,并分析细胞外高钾和低钾分别对静息电位的影响其机制(20分) 静息电位(Resting Potential , RP )是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差。由于这一电位差存在于安静细胞膜的两侧,故亦称跨膜静息电位,简称静息电位或膜电位。 形成机制:静息电位产生的基本原因是离子的跨膜扩散,和钠- 钾泵的特点也有关系。 ①细胞膜内K+及带负电荷的蛋白质多,细胞外Na+、Ca+及Cl-多; ②膜的选择通透性:安静状态下膜对K+通透性大; ③K+顺浓度差向膜外扩散,膜内的蛋白质负离子不能通过膜而被阻止在膜内,结果引起膜外正电荷增多,电位变正;膜内负电荷相对增多,电位变负,产生膜内外电位差。这个电位差阻止K+进一步外流,当促使K+外流浓度差和阻止K+外流的电位差这两种相互对抗的力量相等时,K+外流停止。 ④膜内外电位差便维持在一个稳定的状态,即静息电位。 多数细胞的静息电位的产生是由于正常细胞的细胞内液高 K+ ,而膜在安静时主要对 K+ 有通透能力, K+ 顺浓度差向外扩散的结果。因此,当血钾浓度升高,细胞膜两侧 K+ 的浓度差减小, K+ 向外扩散的量减少,静息电位的绝对值或负值减小
二、胰液的主要成分有哪?它们有何重要功能?(15分) [答案] 胰液的成分中:无机物主要是HCO3-,其次有CL-、Na+、K+、Ca2+等;有机物主要是各种消化酶。 胰液中无机物成分主要是碳酸氢盐,其主要作用是中和进入十二指肠的胃酸,使肠粘膜免受强酸的侵蚀;同时也提供了小肠内多种消化酶活动的最适宜的pH环境。 胰液中的主要有机物是蛋白质,其主要由多种消化酶组成,它们是由腺泡细胞分泌的:①胰淀粉酶,对淀粉的水解率很高,消化产物为麦芽糖和葡萄糖;②胰脂肪酶,分解甘油三脂为脂肪酸、甘油一脂和甘油;③胰蛋白酶和糜蛋白酶,两者都能分解蛋白质为月示和胨,当两者共同作用时,可消化蛋白质为小分子的多肽和氨基酸。 临床和实验均证明,当胰液分泌障碍时,即使其它消化腺的分泌都正常,食物中的脂肪和蛋白质仍不能完全消化,从而也影响吸收。
三、影响心输出量(分输出量)的因素有哪些?并分析影响机制。(20分) 心输出量是搏出量和心率的乘积,凡影响到搏出量或心率的因素都将影响心输出量。心肌收缩的前负荷、后负荷通过异长自身调节机制影响搏出量,而心肌收缩能力通过等长自身调节机制影响搏出量。 1.前负荷对搏出量的影响:前负荷即心室肌收缩前所承受的负荷,也就是心室舒张末期容积,与静脉回心血量有关。前负荷通过异长自身调节的方式调节心搏出量,即增加左心室的前负荷,可使每搏输出量增加或等容心室的室内峰压升高。这种调节方式又称starling机制,是通过改变心肌的初长度从而增强心肌的收缩力来调节搏出量,以适应静脉回流的变化。 2.后负荷对搏出量的影响:心室射血过程中,大动脉血压起着后负荷的作用。后负荷增高时,心室射血所遇阻力增大,使心室等容收缩期延长,射血期缩短,每搏输出量减少。但随后将通过异长和等长调节机制,维持适当的心输出量。 3.心肌收缩能力对搏出量的影响:心肌收缩能力又称心肌变力状态,是一种不依赖于负荷而改变心肌力学活动的内在特性。通过改变心肌变力状态从而调节每搏输出量的方式称为等长自身调节。心肌收缩能力受多种因素影响,主要是由影响兴奋―收缩耦联的因素起作用,其中活化横桥数和肌凝蛋白ATP酶活性是控制心肌收缩力的重要因素。另外,神经、体液因素起一定调节作用,儿茶酚胺、强心药,Ca2+等加强心肌收缩力;乙酰胆碱、缺氧、酸中毒,心衰等降低心肌收缩力。 4.心率对心输出量的影响:心率在40~180次/min范围内变化时,每分输出量与心率成正比;心率超过180次/min时,由于快速充盈期缩短导致搏出量明显减少,所以心输出量随心率增加而降低。心率低于40次/min时,也使心输量减少。
四、影响兴奋性突触后电位和抑制性突触后电位产生机制,比较两者有何不同(20分) (1)兴奋性突触后电位(EPSP)在突触前膜释放的兴奋性递质作用下,突触后膜产生的去极化膜电位,称~,主要与Na+有关。可以扩散和叠加使电位幅度增大,使动作电位容易产生,使之容易发生兴奋。 (2)抑制性突触后电位(IPSP)在突触前膜释放的抑制性递质作用下,突触后膜产生的超极化膜电位,称~,主要与Cl-有关。降低突触后神经元的兴奋性,使动作电位难以产生,从而发挥其抑制效应。 下述5个方面是两者的主要区别:
突触前抑制
突触后抑制
抑制产生部位
起作用的递质
轴-体突触?轴-树突触
突触前轴突末梢
GABA 抑制性递质
突触前轴突末梢去极化→释放兴奋性递质减少→EPSP降低(不产生IPSP)
突触后膜超级化,产生IPSP 作用
全面调节感觉传入活动
通过交互抑制作用和负反馈作用使中枢活动协调
五、影响肾小球滤过的因素有哪些?并分析它们对肾小球滤过率的影响及机制(15分) (一)有效滤过压的改变 构成有效滤过压的三个因素中任一因素改变,都将影响肾小球有效滤过压,从而改变滤过率。 1.肾小球毛细血管血压 当动脉血压在80~180mmHg范围内变动时,使肾小球毛细血管血压无明显变化,肾小球滤过率保持不变。但当动脉血压下降到80mmHg以下时(如大失血),肾小球毛细血管血压明显降低,有效滤过压下降,肾小球滤过率减少,出现少尿,甚至无尿。 2.血浆胶体渗透压 血浆胶体渗透压下降,有效滤过压升高,肾小球滤过率增加,原尿量增多。 3.肾小囊内压 肾小囊内压升高,有效滤过压下降,肾小球滤过率降低,原尿量减少。 (二)肾小球血浆流量的改变 肾小球血浆流量减少,肾小球滤过率下降,致使原尿量减少。 (三)肾小球滤过膜的改变 1.滤过膜的面积 ,有效滤过面积减少,肾小球滤过率随之降低,导致原尿量减少。 2.滤过膜的通透性 滤过膜通透性增加,使大分子蛋白质甚至红细胞滤出,患者出现蛋白尿和血尿。
六、试述含氮类激素的作用机制,并举一例说明。(10分)
含氮激素,包括蛋白质类,多肽类,胺类(氨基酸衍生物)。含氮激素分子较大,一般不能进入细胞内,只是与靶细胞膜上的受体结合。 含氮激素分子较大,一般不能进入细胞内,只是与靶细胞膜上的受体结合,再通过G蛋白改变膜内的某些酶(如腺苷酸环化酶、磷脂酸)的活性,影响细胞内的信息传递物质,即第二信使(如cAMP、三磷酸肌醇等)的产生,进一步激活细胞内的蛋白激酶系统,最后影响蛋白质磷酸化过程,引起特定的生理反应
同济医科大学2004年生理学 一、名词解释 1、化学门控通道:化学门控通道是细胞膜通道的一种。通道的开闭是由膜两侧的化学物质(如递质、激素或药物)控制的,则称为化学门控离子通道(chemically-gated ionchannel),或称为配体门控离子通道。 2、快反应细胞:是指心室肌、心房肌和浦肯野纤维等,它们的动作电位0期去极化是由于快钠通道开放,Na+离子快速内流引起的。0期去极化的速度快。您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
2012年初级药师考试复习总结生理学讲解.doc 10页
本文档一共被下载:
次 ,您可全文免费在线阅读后下载本文档。
下载提示
1.本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
2.该文档所得收入(下载+内容+预览三)归上传者、原创者。
3.登录后可充值,立即自动返金币,充值渠道很便利
需要金币:350 &&
你可能关注的文档:
··········
··········
1细胞的基本功能包括:    2.细胞膜的物质转运功能   (1)单纯扩散:物理扩散   特点:①脂溶性高和分子量小的物质;②高浓度低浓度;③浓度差和膜对该物质的通透性--扩散的方向和速度;④常见物质如O2、C02、N2、乙醇、尿素和水分子等。 (2)易化扩散:   特点:①经载体和通道膜蛋白介导的跨膜转运。②不需要消耗能量,也是高浓度低浓度,属于被动转运。   分类:①经载体易化扩散:葡萄糖、氨基酸、核苷酸等;②经通道易化扩散:Na+、Cl-、Ca2+、K+等带电离子。 电压门控通道(细胞膜Na+、K+、Ca2+通道)、化学门控通道(终板膜ACh受体离子通道)机械门控通道(听毛细胞离子通道)。 消耗能量、(低—高)   1)原发性主动转运:指细胞直接利用代谢产生的能量将物质(带电离子)逆浓度梯度或电位梯度进行跨膜转运的过程。   介导这一过程的膜蛋白为离子泵。钠钾泵钠泵, Na+-K+-ATP酶)   钠泵每分解1分子ATP可将3个Na+移出胞外,同时将2个K+移入胞内,由此造成细胞内的K+的浓度为细胞外液中的30倍左右,而细胞外液中的Na+的浓度为胞内10倍左右。   钠泵的重要生理意义:   ①细膜内外Na+和K+的浓度差,是细胞具有兴奋性的基础;是细胞生物电活动产生的前提条件;   ②维持细胞内高K+,是胞质内许多代谢反应所必需的,如核糖体合成蛋白质;膜外高Na+状态,为许多代谢反应正常进行提供必需条件;   ③钠泵活动能维持胞质渗透压和细胞容积的相对稳定;   ④Na+在膜两侧的浓度差是其他许多物质继发性主动转运(如葡萄糖、氨基酸,以及Na+-H+、Na+-Ca2+交换等)的动力;   ⑤钠泵的活动对维持细胞内pH的稳定性也具有重要意义。   2)继发性主动转运:许多物质逆浓度梯度或电位梯度跨膜转运时,所需能量不直接来自ATP分解,而是来自由Na+泵利用分解ATP释放的能量,在膜两侧建立的Na+浓度势能差,这种间接利用ATP能量的主动转运过程称为继发性主动转运。   其机制是一种称为转运体的膜蛋白,利用膜两侧Na+浓度梯度完成的跨膜转运。如被转运的物质与Na+都向同一方向运动,称为同向转运,如葡萄糖在小肠黏膜重吸收的Na+-葡萄糖同向转运。如被转运的物质与Na+彼此向相反方向运动,则称为反向转运,如细胞普遍存在的Na+-H+交换和Na+-Ca2+交换。 、细胞的跨膜信号转导   信号物质激素、神经递质和细胞因子等。 1.G-蛋白偶联受体信号转导的主要途径:包括:①生物胺类激素肾上腺素、去甲肾上腺素、组胺、5-羟色胺;②肽类激素缓激肽、黄体生成素、甲状旁腺激素;③气味分子和光量子。   (1)受体-G蛋白-Ac途径:   激素为第一信使相应受体,经G-蛋白偶联激活膜内腺苷酸环化酶(Ac) Mg2+--ATP环磷酸腺苷(cAMP第二信使)激活cAMP依赖的蛋白激酶(PKA)催化细胞内多种底物磷酸化细胞发生生物效应(如细胞的分泌,肌细胞的收缩,细胞膜通透性改变,以及细胞内各种酶促反应等)。   (2)受体-G蛋白PLC途径:   胰岛素、缩宫素、催乳素,以及下丘脑调节肽等膜受体结合经G蛋白偶联激活膜内效应器酶——磷脂酶C(PLC),它使磷脂酰二磷酸肌醇(PIP2)分解,生成三磷酸肌醇(IP3)和二酰甘油(DG)。IP3和DG作为第二信使,在细胞内发挥信息传递作用。   IP3与内质网外膜上的Ca2+通道结合释放Ca2+入胞浆胞浆内Ca2+浓度明显增加Ca2+与细胞内钙调蛋白(CAM)结合,激活蛋白激酶,促进蛋白质酶磷酸化,从而调节细胞的功能活动。   DG的作用主要是特异性激活蛋白激酶C(PKC)。PKC与PKA一样可使多种蛋白质或酶发生磷酸化反应,进而调节细胞的生物效应。   2.离子受体介导的信号转导途径:离子通道受体也称促离子型受体,受体蛋白本身就是离子通道,通道的开放既涉及到离子本身的跨膜转运,又可实现化学信号的跨膜转导。例如,骨骼肌终板膜上N2型ACh受体为化学门控通道
3.酶偶联受体介导的信号转导途径:酶偶联受体具有和G蛋白偶联受体完全不同的分子结构和特性,受体分子的胞质侧自身具有酶的活性,或者可直接结合与激活胞质中的酶。   ①酪氨酸激酶受体本身具有酪氨酸蛋白激酶(PTK)活性。当激素与受体结合后,可使位于膜内区段上的PTK激活,进而使自身肽链和膜内蛋白底物中的酪氨酸残基磷酸化,经胞内一系列信息传递的级联反应,最终导致细胞核内基因转录过程的改变以及细胞内相应的生物效应。大部分生长因子、胰岛素和一部分肽类激素都是通过该类受体信号转导。   ②鸟苷酸环化酶受体与配体(心房钠尿肽)结合,将激活鸟苷酸环化酶(GC),GC使胞质内的GTP环化,生成cGMP,cGMP结合并激活蛋白激酶G(PKG),PKG对底物蛋白
正在加载中,请稍后...

我要回帖

更多关于 心脏泵血过程动画播放 的文章

 

随机推荐