宽板弯曲和窄板弯曲二者弯曲变形区78米宽道路横断面面的变形有什么不同

下载费用:5 元 &
【2017年整理】成形极限图试验 成形极限图试验成形极限图(FLD)或成形极限曲线(FLC)是板料冲压成形性能发展过程中的较新成果。成形极限图的试验方法如下所述:1)在试验用坯料上制备好坐标网格;2)以一定的加载方式使坯料产生胀形变形,测出试件破裂或失稳时的应变ε 1、ε 2(长、短轴方向);3)改变坯料尺寸或加载条件,重复 2)项试验,测得另一状态下的ε 1、ε 2;4)取得一定量的数值后,在平面坐标图上描绘出各试验点,然后圆滑连线,作出 FLD。成形极限曲线将整个图形分成如 1 所示的三部分:安全区、破裂区及临界区。图 1 成形极限图及其用法于大型复杂薄板冲压件成形时,凹模内毛坯产生破裂的情况较多。这一部分毛坯一般是在拉应力作用下成形的,变形区内产生的断裂是延性断裂。掌握板材拉伸失稳理论,利用成形极限图,可以对这种破坏问题较快地作出判断,找出原因,提出相应的解决办法。拉伸失稳理论是计算建立成形极限图的基础。拉伸失稳是指在拉应力作用下,材料在板平面方向内失去了塑性变形稳定性而产生缩颈,并随这发生破裂。拉伸失稳可分为分散失稳和集中失稳两种。分散性失稳是指板料的塑性变形达到一定程度后,变形开始出现在材料内某些性能不均匀或厚度不均匀的部位,载荷开始随变形程度增大而减小,由于应变硬化,这些缩颈能在一定的尺寸范围内转移,使材料在这个范围内产生一种亚稳定的塑性流动,故载荷下降比较缓慢。但由于材料的硬化增强,变形抗力又有所提高,最后,最薄弱的环节逐渐显示出来,缩颈就逐步集中到某一狭窄区段,这样就逐渐形成了集中失稳。产生集中失稳时,缩颈点也不能再转移出去,此时金属产生不稳定流动,由于这时承载面急剧减小,变形;力也就急剧下降,很快就异致破坏。成形极限是指材料不发生塑性失稳破坏时的极限应变值。但由于目前失稳理论的计算值还不能准确反映实际冲压成形中毛坯的变形极限,在实际生产中普遍应用由实验得到的成形极限图。成形极限图(FLD) ,也称成形极限线(FLC)是对板材成形性能的一种定量描述,同时也是对冲压工艺成败性的一种判断曲线。它比用总体成形极限参数,如胀形系数、翻边系数等来判断是否能成形更为方便而准确。 成形极限图(FLD)是板材在不同应变路径下的局部失稳极限应变 和 (相对应变)或 和 (真实应变)构成的条带形区域或曲线(图 1-14) 。它全面反映了板材在单向和双向拉应力作用下的局部成形极限。在板材成形中,板平面内的两主应变的任意组合,只要落在成形极限图中的成形极限曲线上,板材变形时就会产生破裂;反之则是安全。图 1-14 中的条带形区域称为界区,变形如位于临界区,表明此处板材有濒临于破裂的危险。由此可见,FLD 是判断和评定板材成形性能的最为简便和直观的方法,是解决板材冲压成形问题的一个非常有效的工具。图 1-14 成形极限 图(FLD) 一、成形极限图(FLD)的制作 目前,试验确定板材成形极限图的方法是:在毛坯(试样)表面预先作出一定形状的风格。冲压成形后,观察、测定网格尺寸的变化量,经过计算,即可得到网格所在位置的应变。对变形区内各点网格尺寸的变化进行测量与计算,可得到应变的分布。网格图形如图 1-15 所示。图 1-16 是采用圆形网格,在变形网格变成椭圆形状,椭圆的长、短轴方向就是主轴方向,主应变数值为相应应变:长轴应变: 短轴应变:  真实应变:长轴应变: 短轴应变: 图 1-15 常用网络形式 a) 圆形网络 b) 组合网络 c) 叠加网络图 1-16 网络的变形二、 FLD 在生产中的应用 成形极限图与应变分析网格法结合在一起。可以分析解决许多生产实际问题。这种方法用于分析解决问题的原理是:首先通过试验方法获得研究零件所用板材的成形极限图。再将网格系统制作在研究零件的毛坯表面划变形危险区,坯料成形为零件后,测定其网格的变化量,计算出应变值。将应变值标注在所用材料的成形极限图上。这时零件的变形危险区域便可准确加以判断。成形极限图的应用大致有以下几方面:1) 解决冲模调试中的破裂问题:2) 判断所设计工艺过程的安全裕度,选用合适的冲压材料;3) 可用于冲压成形过程的监视和寻找故障。FLD 应用举例:为消除破裂指出应采取的工艺措施。将汽车覆盖件上某一危险部位的应变值标注到所用材料的成形极限图上(图 1-17) 。如果覆盖件上危险部位的应变位于 B 处,要增加其安全,由图中看出:应减小 或增大 ,最好兼而有之。减小 需降低椭圆长轴方向的流动阻力,还可以采用在方向减小坯料尺寸,增大模具圆角半径,改善其润滑条件等方法来实现。如要增加 ,需增加椭圆短轴方向的流动阻力,实现的方法是在这一方向上增加坯料尺寸,减小模具圆角,在垂直于短轴方向设置拉深肋等。若覆盖件危险部位的应变位于 D 处,要增加其安全性,可以减小 或减小 的代数着手,应注意的是,减小 的代数值应减小短轴方向的流动阻力。通过上述分析可见,汽车覆盖件成形中,对其成形质量影响较大的工艺参数是:模具圆角半径、坯料形状和尺寸、压边力、润滑状态等,成形工艺设计的优劣,在很大程度上取决于合理选择这些工艺参数,成形极限图提供了合理选择和优化工艺参数的途径。图 1-17 用 FLD 预见危险性 图 3.0.1 各种常见弯曲件 3.1 弯曲变形过程及变形特点 在压力机上采用压弯模具对板料进行压弯是弯曲工艺中运用最多的方法。弯曲变形的过程一般经历弹性弯曲变形、弹-塑性弯曲变形、塑性弯曲变形三个阶段。现以常见的 V 形件弯曲为例,如图 3.1.1 所示。板料从平面弯曲成一定角度和形状,其变形过程是围绕着弯曲圆角区域展开的,弯曲圆角区域为主要变形区。 弯曲开始时,模具的 凸 、凹模分别与板料在 A 、B 处相接触。 设 凸模在 A 处施加的弯曲力为 2F (见图 3.1.1 a )。这时在 B 处(凹模与板料的接触支点则产生反作用力并与弯曲力构成弯曲力矩 M = F·(L 1 /2) ,使板料产生弯曲。在弯曲的开始阶段,弯曲圆角半径 r 很大,弯曲力矩很小,仅引起材料的弹性弯曲变形。图 3.1.1 弯曲过程随着凸模进入 凹模深度的增大, 凹模与板料的接触处位置发生变化,支点 B 沿凹模斜面不断下移,弯曲力臂 L 逐渐减小,即 L n 200 时,弯曲区材料 即开始进入弹-塑性弯曲阶段,毛坯变形区内(弯曲半径发生变化的部分)料厚的内外表面首先开始出现塑性变形,随后塑性变形向毛坯内部扩展。在弹-塑性弯曲变形过程中,促使材料变形的弯曲力矩逐渐增大,弯曲力臂 L 继续减小,弯曲力则不断加大。 凸模继续下行,当相对弯曲半径 r/t 为了观察板料弯曲时的金属流动情况,便于分析材料的变形特点,可以采用在弯曲前的板料侧表面设置正方形网格的方法。通常用机械刻线或照相腐蚀制作网格,然后用工具显微镜观察测量弯曲前后网格的尺寸和形状变化情况,如图 3.1.2a〕 所示。 弯曲前,材料侧面线条均为直线 , 组成大小一致的正方形小格,纵向网格线长度 aa =bb。弯曲后,通过观察网格形状的变化,(如图 3.1.2b 所示)可以看出弯曲变形具有以下特点:图 3.1.2 弯曲变形分析一 . 弯曲圆角部分是弯曲变形的主要区域 可以观察到位于弯曲圆角部分的网格发生了显著的变化,原来的正方形网格变成了扇形。靠近圆角部分的直边有少量变形,而其余直边部分的网格仍保持原状,没有变形。说明弯曲变形的区域主要发生在弯曲圆角部分。 二 . 弯曲变形区内的中性层 在弯曲圆角变形区内,板料内侧(靠近 凸 模一侧)的纵向网格线长度缩短,愈靠近内侧愈短。比较弯曲前后相应位置的网格线长度,可以看出圆弧 为最短, 远小于弯曲前的直线长度 ,说明 内侧材料受压缩。而板料外侧(靠近凹模一侧)的纵向网格线长度伸长,愈靠近外侧愈长。最外侧的圆弧长度为最长,明显大于弯曲前的直线长度 ,说明外侧材料受到拉伸。 从板料弯曲外侧纵向网格线长度的伸长过渡到内侧长度的缩短,长度是逐渐改变的。由于材料的连续性,在伸长和缩短两个变形区域之间,其中必定有一层金属纤维材料的长度在弯曲前后保持不变,这一金属层称为应变中性层(见图 3-3 中的 O-O 层)。 应变中性层长度的确定是今后进行弯曲件毛坯展开尺寸计算的重要依据。当弯曲变形程度很小时,应变中性层的位置基本上处于材料厚度的中心,但当弯曲变形程度较大时,可以发现应变中性 层向材料内侧移动, 变形量愈大 ,内移量愈大 。 三 . 变形 区材料 厚度变薄的现象 弯曲变形程度较大时,变形区外侧材料受拉伸长,使得厚度方向的材料减薄;变形区内侧材料受压,使得厚度方向的材料增厚。由于应变中性层位置的内移,外侧的减薄区域随之扩大,内侧的增厚区域逐渐缩小,外侧的减薄量大于内侧的增厚量,因此使弯曲变形区的材料厚度变薄。 变形程度愈大,变薄现象愈严重。变薄后的厚度 t′ =ηt,(η 是 变薄系数,根据实验测定, η 值总是小于 1 )。 四 . 变形区横断面的变形 板料的相对宽度 b/t ( b 是板料的宽度, t 是板料的厚度)对弯曲变形区的材料变形有很大影响。一般将相对宽度 b/t >3 的板料 称为宽板 ,相对宽度 b/t ≤ 3 的称为窄板。 窄板弯曲时,宽度方向的变形不受约束。由于弯曲变形区外侧材料 受拉引起 板料宽度方向收缩,内侧材料受压引起板料宽度方向增厚,其横断面形状变成了 外窄内 宽的扇形(见图 3-4a )。变形区横断面形状尺寸发生改变称为畸变。 宽板弯曲 时,在宽度方向的变形会受到相邻部分材料的制约,材料不易流动,因此其横断面形状变化较小,仅在两端会出现少量变形(见图 3-4b ),由于相对于宽度尺寸而言数值较小,横断面形状基本保持为矩形。 虽然宽板弯曲 仅存在少量畸变,但是在某些弯曲件生产场合,如铰链加工制造,需要 两个宽板弯曲 件的配合时,这种畸变可能会影响产品的质量。当弯曲 件质量 要求高时, 上述畸变可以采取在变形部位预做圆弧切口的方法加以防止。 板料塑性弯曲时,变形区内的应力和应变状态取决于弯曲变形程度以及弯曲毛坯的相对宽度 b/t。如图 3-5 所示,取材料的微小立方单元体表述弯曲变形区的应力和应变状态, σ θ 、 ε θ 表示切向 (纵向、长度方向) 应力、应变, σ r 、 ε r 表示径向(厚度方向)的应力、应变, σ b 、 ε b 表示宽度方向的应力、应变。从图中可以看出, 对于宽板弯曲 或窄板弯曲,变形区的应力和应变状态在切向和径向是完全相同的,仅在宽度方向有所不同。图 3.1.3 自由弯曲时的应力应变状态 一. 应力状态 在切向:外侧 材料受拉 ,切向应力 σ θ 为正;内侧材料受压,切向应力 σ θ 为负。 切向应力为绝对值最大的主应力。外侧拉应力与内侧压应力间的分界层称为应力中性层,当弯曲变形程度很大时 也有向内侧移动的特性。 应变中性层的内 移总是 滞后于应力中性层,这是由于应力中性层的内移,使外侧拉应力区域不断向内侧压应力区域扩展,原中性层内侧附近的材料层由压缩变形转变为拉伸变形,从而造成了应变中性层的内移。 在径向:由于变形区各层金属间的相互挤压作用,内侧、外侧同为受压,径向应力 σ r 均为负值。 在 径向压 应力 σ r 的作用下,切向应力 σ θ 的分布性质产生了显著的变化,外侧拉应力的数值小于内侧区域的压应力。只有使拉应力区域扩大,压应力区域减小,才能重新保持弯曲时的静力平衡条件,因此应力中性层必将内移 相对弯曲半径 r/t 越小,径向压 应力 σ r 对应力中性层内移的作用越显著。 在宽度方向:窄板弯曲时,由于材料在宽度方向的变形不受约束,因此内、外侧的应力均接近于零。 宽板弯曲 时,在宽度方向材料流动受阻、变形困难,结果在弯曲变形区外侧产生阻止材料沿宽度方向收缩的拉应力, σ b 为正,而在变形区内侧产生阻止材料沿宽度方向增宽的压应力, σ b 为负。 由于窄板
下载文档到电脑,查找使用更方便
5 元 &&0人已下载
还剩页未读,继续阅读
<a href="UserManage/CopyrightAppeal.aspx?bid=1000486" title="版权申诉" class="fLeft works-manage-item works-manage-report" target="_blank"
关&键&词: 2017 整理 成形 极限 试验
& 金锄头文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:【2017年整理】成形极限图试验 链接地址:
当前资源信息
类型: 共享资源
格式: DOC
大小: 126.50KB
上传时间:
&& 侵权内容
&& 违法内容
&& 其它类型
&|&川公网安备 12号&|&经营许可证(蜀ICP备号-1)(C) by Sichuan Goldhoe Inc. All Rights Reserved.V形件自由弯曲应力分析和最大弯矩计算公式
16:35:55& 来源:&
  摘 要: 根据金属塑性成形原理和平板理论,结合卸载前后的板料的弯曲特点,推导出了V形件自由弯曲时的应力和最大弯矩的计算公式,为研究V形件自由弯曲时的回弹、破裂和冲压设备的选型提供理论依据.
  弯曲是将板料、棒料等弯成一定形状和角度零件的成形方法,是板料冲压中常见的加工工序之一.由于板料弯曲变形过程的复杂性,弯曲件常出现回弹、横截面畸变、翘曲和破裂等缺陷.为了提高板料的弯曲质量,常需对板料塑性弯曲时的应力应变状态、变形区的应力和应变数值、最大弯矩及其分布规律进行分析.由此推导出V形件自由弯曲时的应力和最大弯矩的计算公式,为V形件自由弯曲时的回弹、破裂和冲压设备的选型提供理论依据.
  1 V形件自由弯曲变形过程和应力分析
  板料弯曲时,变形区的应力与应变状态沿切向和径向虽然具有相同的特点,但沿板宽方向两者的应力和应变有很大的不同.由于窄板弯曲和宽板弯曲方向变形的特殊性,使得窄板弯曲时应力状态是平面的,应变状态是立体的,而宽板弯曲时正好相反,应变状态是平面的,应力状态是立体的[1].
  板料弯曲如图1所示.板料弯曲时,外层纤维受拉,内层纤维受压,在拉伸和压缩之间存在着一个既不伸长也不压缩的应变中性层.这层的弧长是L0=R0&,在距中性层y处平面,弧长是L=(R0+y)&.因此工程上弯曲应变为:
  切向应变近似为
  (1)板料宽度方向的变形忽略不计(&z=0和&y=0);
  (2)塑性弯曲后,弯曲区的横截面仍保持平面;
  (3)内、外层的切向应力和切向应变关系与单向拉伸状态下的应力应变关系完全一致.弯曲时的应变和应力的分布如图2所示.
  则有效应变和有效应力分别为[2]
  式(4)中:&x为切向应力.
将本文分享至:|||||
【免责声明】本文仅代表作者个人观点,与中国计量测控网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以 及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
前沿的计量测试资讯海量呈现,高端的计量测试技术权威发布。
计测客户端下载
这里有计量领域最大的社交圈子,您可以在这里交流互动、拓展人脉、施展才华。iPhone
这里有计量领域最大的社交圈子,您可以在这里交流互动、拓展人脉、施展才华。Android
()()()()()()()()()()
新闻频道联系方式
:广告合作热线:010-
:联系邮箱:
Copyright & . All Rights Reserved 中国计量测控网 版权所有 &&&
京ICP备号-1 &&京公网安备079号&& 计测网客服:010-
&&邮编:100095 &&邮箱: &&广告业务QQ:&&客服QQ:
&&投稿QQ:冲压重点_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
阅读已结束,下载文档到电脑
想免费下载本文?
定制HR最喜欢的简历
你可能喜欢一、课程设置
《冲压工艺与模具设计》课程是《模具设计与制造》专业(专业代码:580106)人才培养方案中确定的专业主干核心课程。该课程是根据模具设计与制造专业人才必备的知识、技能、素质的要求;以培养现代制造业高素质高技能型人才培养为目标;以模具设计与制造专业标准和社会相应的职业资格为指导下设置的专业主干核心课程。
1.课程的技术背景及特征
冲压工艺与模具设计是冲压生产技术的核心技术,冲压技术涉及电子信息、...
课程负责人
成虹教授,硕士生导师(兼)。第三届高等学校国家级教学名师奖获得者;四川省劳动模范、四川省有突出贡献的优秀专家、全国师德先进个人。现任成都工业学院四川省高校模具技术重点实验室主任、模具设计与制造国家级教学团队带头人、四川省第十届党代会代表。兼任四川省模具工业协会副理事长等职务。
成虹教授长期从事模具设计与制造专业的教学与科研工作,有5年的工程实践经历,是国内模具教育界知名专家。近年来出版了《冲压工艺与模具设计》、《冲压模具设计师手册》等著作8部,其中《冲压工艺与模具设计》教材被评为四川省精品教材;主持的《冲压工艺与模具...&
冲压工艺与模具设计
ISBN:7-04-
主编:成虹
高等教育出版社
冲压模具设计与制造
ISBN:978-7-04-
主编:刘建超 张宝忠
高等教育出版社
还有谁在学这门课:
主办单位:高等教育出版社有限公司&&&&&&&&京ICP备号-2&&&&&&京公网安备-2
中国大学精品开放课程适用于《中华人民共和国著作权法》
高等教育出版社享有中国大学精品开放课程信息网络传播的专有使用权 未经书面允许,请勿转播Access denied |
used Cloudflare to restrict access
Please enable cookies.
What happened?
The owner of this website () has banned your access based on your browser's signature (3b5be0-ua98).

我要回帖

更多关于 宽板和窄板有什么区别 的文章

 

随机推荐