为什么医学中的AUC可以代表药物进入促进血液循环的药物量

【实用帖】药理考试必备,不管考不考,看看总是好的吧!_贵阳医学院神奇民族医药学院吧_百度贴吧
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&签到排名:今日本吧第个签到,本吧因你更精彩,明天继续来努力!
本吧签到人数:0成为超级会员,使用一键签到本月漏签0次!成为超级会员,赠送8张补签卡连续签到:天&&累计签到:天超级会员单次开通12个月以上,赠送连续签到卡3张
关注:15,440贴子:
【实用帖】药理考试必备,不管考不考,看看总是好的吧!收藏
1.使肝药酶活性增加的药物是 (b 利福平 )2.某药半衰期为10小时,一次给药后,药物在体内基本消除时间为(d 2天左右)3.口服多次给药,如何能使血药浓度迅速达到稳态浓度 ( b首剂加倍 )4.对药物生物利用度影响最大的因素是 (c 给药途径)5.某药物与肝药酶抑制剂合用后其效应 (b 增强 )
6.临床所用的药物治疗量是指(a 有效量 )7.药物进入血液循环后,首先 (e 与血浆蛋白结合 )8.大多数药物是按下列哪种机制进入体内 (b 简单扩散 )9.用时—量曲线下面积反映 (d 生物利用度 )10.有首过消除的给药途径是 (e 口服给药 )
11.舌下给药的优点是 (d 避免首关消除 )12.最常用的给药途径 (a 口服给药 )13.口服生物利用度可反映药物吸收速度对 ( e 药效的影响 )14.苯巴比妥可使氯丙嗪血药浓度明显降低,这是因为苯巴比妥 (c 诱导肝药酶使氯丙嗪代谢增加 )15.主动转运的特点是 (b 通过载体转运,需要耗能 )
16.相对生物利用度等于 { a (受试药物AUC/标准药物AUC)*100%}17.关于肝药酶的叙述 ,错误的是 (e 只代谢70余种药物 )18.关于药物主动转运的叙述错误的是 (d 比被动转运较快达到平衡 )19.药物吸收达到稳态浓度时说明 (d 药物的吸收速度与消除速度达到平衡)20.肝药酶的特点是 (d 专一性低,活性有限,个体差异大)
21.稳态血药浓度的水平取决于 (a给药剂量 )22.药物产生副反应的药理学基础是( b 药理效应选择性低 )23.肌注阿托品治疗胆绞痛,引起视力模糊的作用称为 ( b副反应 )24.药物作用的两重性是指 (c 既有治疗作用,又有不良反应 )25.不良反应不包括 (c 戒断效应 )
26.副作用是指( d 在治疗剂量出现与治疗目的无关的作用 )27.受体阻断药的特点是 (c 对受体有亲和力,但无内在活性 )28.药物的毒性反应是 (c 因剂量过大或机体对该药特别敏感所发生的对机体有害的反应 )29.短期内连续应用麻黄碱可产生 (c 快速耐受性 )30.副作用在一下哪种剂量时产生 (a 治疗量 )
31.β1受体主要分布于哪一器官 (d 心脏 )32.乙酰胆碱作用消失主要依赖于( c胆碱酯酶水解 )33.α1受体阻断产生的效应是 (b 血管舒张 )34.M,N受体阻断产生的效应是 (a 骨骼肌松弛 )35.M受体阻断产生的效应是 (c 内脏平滑肌松弛 )
难道这个没人喜欢看 不看的要挂噢
想要的说声我明天发后面的!睡了。
顶顶Δ~~~~Δξ ・ェ・ ξξ   ξ ξ   ξ ξ   “~~~~〇 ξ  苹果专用 ξ  ξ  ξ  ξ~~~ξ  ξ  ξ_ξξ_ξ ξ_ξξ_ξ.----次奥, 我和我的小伙伴们都惊呆了
学长的贴,必须顶,用力顶。虽然我不考药理
学长,睡觉了,你别激动了,歇一歇,就睡了吧。
36.β1受体兴奋可引起(a 心率加快 )37.M受体心奋可引起(d 胃肠道平滑肌收缩 )38.β2受体心奋可引起 (e 骨骼肌收缩 )39.在下列神经递质中,其释放后作用消失主要通过神经末梢再摄取的是 (d 去甲肾上腺素)40.哪种受体属于配体门控离子通道型受体 (e N胆碱受体 )
哇哦,送经验Δ~~~~Δξ ・ェ・ ξξ   ξ ξ   ξ ξ   “~~~~〇 ξ  苹果专用 ξ  ξ  ξ  ξ~~~ξ  ξ  ξ_ξξ_ξ ξ_ξξ_ξ.----次奥, 我和我的小伙伴们都惊呆了
哇,好东西啊,我来晚咯,出去两天
果断水了,小明有3个苹果,小红有2个苹果,小丽有1个苹果。现小明给小丽2个苹果,小丽给小红1个苹果,小红给小明2个苹果。请问:三人一共有几个肾?
登录百度帐号推荐应用
为兴趣而生,贴吧更懂你。或她再也控制住自己情感,边哭边喊着妈妈。
小公举深夜开启17年虐狗第一弹,宣布昆凌怀二胎。
声明:本文由入驻搜狐公众平台的作者撰写,除搜狐官方账号外,观点仅代表作者本人,不代表搜狐立场。
  除了做好提前检查和定期监测外,我们还应该采取哪些措施,减少甚至避免他汀不良反应的发生?
  作者:小可真
  来源:医学界临床药学频道
  他汀类药物的不良反应主要有:肝脏损害、肌病、新发糖尿病、认识功能改变和神经系统损害、肾脏损害。
  虽然大量证据表明在合理使用的情况下,他汀类药物是安全的,并且临床获益远大于风险,但认识和防治他汀的不良反应也非常重要,这既可减轻部分患者因服用他汀带来的痛苦,也有助于提高其长期服用他汀产生的临床获益。
  为此,除了做好提前检查和定期监测外,我们应该采取措施,减少甚至避免他汀不良反应的发生。
  1、减少他汀剂量
  长期使用他汀是临床获益的重要条件,研究发现他汀不良反应与剂量呈正相关,而小剂量他汀依然能有效降低心脑血管病发生风险,因此在患者耐受的情况下,可减少他汀剂量。阿托伐他汀10mg/d、普伐他汀10mg/d、洛伐他汀10mg/d均可有效降低患者心脑血管事件的发生概率。
  2、间断给药
  部分他汀类药物血浆半衰期相对较长,可间断给药(见表1),如阿托伐他汀和瑞舒伐他汀,可一周给药2~3次。如患者不耐受,可从每周1次开始,逐渐增加给药频率,以减少不良反应。
  表1 常见他汀类药物的最小剂量、代谢途径和半衰期
  3、他汀类药物相互替换
  经CYP3A4酶代谢的洛伐他汀、辛伐他汀、阿托伐他汀与其他药物相互作用多见,而经CYP2C9酶代谢的氟伐他汀、瑞舒伐他汀与其他药物相互作用少见,不通过CYP代谢的普伐他汀与其他药物相互作用罕见。因此,当患者同时服用多种药物时,可选择经不同酶代谢的他汀(见表1)。
  4、尽量避免使用对他汀有药代动力学影响的药物(见表2)
  某些药物可通过抑制他汀代谢酶或他汀及其代谢产物的载体使他汀AUC(曲线下面积,反映药物进入血液循环的总量)明显增高(如环孢素可使瑞舒伐他汀AUC升高700%)。
  克拉霉素是CYP 3A4强抑制剂,通过抑制该代谢酶致阿托伐他汀AUC升高,环孢素则抑制阿托伐他汀及其代谢产物的载体OATP1B1,从而增加阿托伐他汀生物利用度,增加了他汀不良反应的发生风险。
  表2 其他类药物对他汀类药物的药动学影响
  5、小剂量他汀与其他降脂药物联合应用
  小剂量他汀可与多种其他降脂药物(如烟酸、依折麦布、贝特类药物、胆汁酸结合剂、植物固醇、ω-3-脂肪酸等)联合应用,降低不良反应,维持达标水平。
  目前临床可选的联合方案:
  (1)低密度脂蛋白胆固醇未达标:小剂量他汀+烟酸或贝特类或依折麦布;
  (2)高密度脂蛋白胆固醇未达标:小加量他汀+烟酸或贝特类;
  (3)甘油三酯未达标:小剂量他汀+烟酸或贝特类或鱼油。加用烟酸和贝特类时会增加肌病风险,需定期监测。
  6、非他汀降脂药物的替换应用
  临床上常见的烟酸、多廿烷醇、依折麦布等可作为他汀类药物的替代药物(见表3)。
  表3 临床常用非他汀类降脂药
  欢迎投稿到小编邮箱:
  pengrunkun@
  请注明:【投稿】医院+科室+姓名
  稿费:100~1000元
  来稿仅接受word文档,谢谢配合
  小编微信:kunshanyu9216
欢迎举报抄袭、转载、暴力色情及含有欺诈和虚假信息的不良文章。
请先登录再操作
请先登录再操作
微信扫一扫分享至朋友圈
搜狐公众平台官方账号
生活时尚&搭配博主 /生活时尚自媒体 /时尚类书籍作者
搜狐网教育频道官方账号
全球最大华文占星网站-专业研究星座命理及测算服务机构
1346文章数
主演:黄晓明/陈乔恩/乔任梁/谢君豪/吕佳容/戚迹
主演:陈晓/陈妍希/张馨予/杨明娜/毛晓彤/孙耀琦
主演:陈键锋/李依晓/张迪/郑亦桐/张明明/何彦霓
主演:尚格?云顿/乔?弗拉尼甘/Bianca Bree
主演:艾斯?库珀/ 查宁?塔图姆/ 乔纳?希尔
baby14岁写真曝光
李冰冰向成龙撒娇争宠
李湘遭闺蜜曝光旧爱
美女模特教老板走秀
曝搬砖男神奇葩择偶观
柳岩被迫成赚钱工具
大屁小P虐心恋
匆匆那年大结局
乔杉遭粉丝骚扰
男闺蜜的尴尬初夜
客服热线:86-10-
客服邮箱:生物药剂学与药物动力学考试重点
BCS: 是依据药物的渗透性和溶解度,将药物分成四大类,并可根据这两个特征参数预测药物在体内-体外的相关性。
Css(稳态血药浓度/坪浓度):指药物进入体内的速率等于体内消除的速率时的血药浓度。
MRT:药物在体内平均滞留时间。
阿霉素;是一个有效的化疗药物,但由于对心脏的毒性较大,常常使用受到限制。
半衰期:指药物在体内消除一半所用的时间或血浆药物浓度降低一半所需的时间。特点:一级速率过程的消除半衰期与剂量无关,而消除速率常数成反比因而半衰期为常数。
包合作用:将药物分子包钳与另一种物质分子的空穴结构内的制剂技术
被动扩散:存在于膜两侧的药物服从浓度梯度扩散的过程。(存在于膜两侧的药物顺浓度梯度,即从高浓度向低浓度一侧扩散的过程。)
被动转运:是指药物的膜转运服从浓度梯度扩散原理,即从高浓度一侧向低浓度一侧扩散的过程。
崩解:系指固体制剂在检查时限内全部崩解或溶解成碎粒的过程
表观分布容积:是血药浓度与体内药物间的一个比值, 意指在药物充分分布的前提下,体内药物按血浆中同样浓度分布时所需的液体总容积,并不代表具体生理空间。 反映药物分布的广泛程度或药物与组织成分的结合程度
波动百分数:系指稳态最大血药浓度与稳态最小血药浓度之差与稳态最大血药浓度值的百分数。
波动度:系指稳态最大血药浓度与稳态最小血药浓度之差与平稳血药浓度的比值。
残数法:是药物动力学中把一条曲线分段分解成若干指数函数的一种常用方法。
肠肝循环:是指在胆汁中排泄的药物或其代谢物在小肠中移动期间重新被吸收返回肝门静脉,并经肝脏重新进入全身循环,然后再分泌,直至最终从尿中排出的现象。
处置:分布、代谢和排泄的总过程。
促进扩散:是指某些药物在细胞膜载体的帮助下,由膜高浓度 一侧向低浓度一侧的转运。
达坪分数fss(n):是指n次给药后的血药浓度Cn与坪浓度Css相比,相当于Css的分数。
代谢:药物在吸收过程或进入人体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。又叫生物转化。
单纯转运;是指药物的跨膜转运受膜两侧浓度差限 制过程。
单室模型:假设机体给药后,药物立即在全身各部位达到动态平衡,这时把整个机体视为一个房室,称为一室模型或单室模型,单室模型并不意味着所有身体各组织在任何时刻药物浓度都一样,蛋要求机体各组织药物水平能随血浆浓度变化而变化。
第二相反应:即结合反应,通常是药物或第一相反应的代谢产物结构中的极性基团与机体内源性物质反应生成结合物。
第一相反应:包括氧化、还原和水解三种,通常是脂溶性药物通过反应生成极性基团;
多晶型:化学结构相同的药物,由于结晶条件不同,可得到数种晶格排列不同非晶型,这种现象称为多晶型。
二室模型:从速度论的观点将机体划分为药物分布均匀程度不同的两个独立系统。一般将血流丰富及药物能瞬时达到分不平衡的部分如心肝脾肺肾,划分为一个隔室,成为中央室,降血流相对供应少,药物分布达到血液平衡较长时间的部分划分为周边室。
非线性药物动力学:有些药物的吸收,分布和体内消除过程,并不符合线性药物动力学特征,这种药物动力学称为非线性药物动力学。
分布:药物进入体循环后向各组织、器官或者体液转运的过程。
负荷剂量:首次给予的较大的剂量,使血药浓度达到稳态血药浓度的90%以上的剂量。也叫冲击量和首剂量
肝提取率: ER=(CA-CV)/CA式中CA和CV分别代表进出肝脏的血中药物浓度。ER是指药物通过肝脏从门脉血清除的分数。
高渗透药物:是指在没有 证据说明药物在肠道不稳定的情况下,有90%以上的药物被吸收。
隔室模型:时将身体视为一个系统,系统内部按动力学特点,分为若干室,只要体内某些部位接受药物及消除药物速率相似,都可归纳为一个房室。
缓控释制剂:是通过延缓或控制药物的释放来控制药物的吸收药物能在较长时间内时间内持续释放药物以达到长效作用。
极性速度过程;当药物的半衰期与剂量无关,血药浓度一时间曲线下面积与剂量成正比时,其速度过程被称为零级速率常数。
剂量数:是反映药物溶解性与口服吸收关系的参数,是药物溶解性能的函数。
接触释放:是膜间作用的另一种形式,主要是由于微粒和细胞接触后,微粒中的药物释放并想细胞内转运。
结合反应:通常是药物成第一相反应生成的代谢产物结构中的极性基因与机体内源性物质反应生成结合物的结构。
绝对生物利用度(Fabs):是药物吸收进入体循环的量与给药剂量的比值,是以静脉给药制剂为参比制剂获得的药物吸收进入体循环的相对量。
快速释药制剂:指相对与缓释制剂的普通制剂,另一种是采用特殊的辅料和方法制备出的比普通制剂释出速率还要快的制剂。
量积系数:系指稳态血药浓度与第一次给药后的血药浓度的比例值,以r表示,也是一个很有价值的表示药物在体内蓄积程度。
临街颗粒:是指不影响药物吸收的最大粒径。
淋巴:是静脉循环系统的辅助组成部分,主要由淋:是静脉循环系统的辅助组成部分,主要由淋巴管。淋巴器官。淋巴液和淋巴组织组成。
零级速率常数:是指药物的转运速率在任何时间都是恒定的,与药物量或浓度无差。
酶抑制作用:某些药物重复应用或与其他药物合并应用时,可抑制酶降解而导致代谢减慢的现象。
酶诱导作用:药物可促进酶的合成导致药物代谢被促进的现象。
米曼常数:是指药物在体内的消除速率为一半时所对应的血药浓度。
膜动转运:是指通过细胞膜的主动变形将药物摄入 细胞内或从细胞内释放到细胞外的转运过程。
膜间转运:是指微粒和相邻的细胞膜间的脂质成分发生相互交换作用。
膜转运:物质通过生物膜的现象。
内吞:是指微生物被内状内皮系统细胞,特别是单核巨噬细胞作为外来异物吞噬进入细胞内,并迅速被溶酶体消化裂解释放药物。
排泄:药物或其代谢产物排出体外的过程。
平均稳态血药浓度:当血药浓度达到平衡后,在一个剂量间隔时间内,血药浓度-时间曲线下的面积除以间隔时间所得的商。
前体药物:将活性药物衍生化成药理惰性物质,该惰性物质为前体药物,它在体内经化学反应或酶反应后,能够回复到原来的母体药物,再发挥治疗作用。
清除:代谢与排泄过程药物被清除,合称为清除。
清除率:是单位时间内从体内消除的含血浆体积或单位时间丛体内消除的药物表观分布容积。
群体:是根据研究目的所确定的研究对象的全体,大量的研究表明在一个患者群体内药动学参数存在很大变异体。
群体药物动力学:PPK 即药物动力学的群体分析法,是将经典药物动力学基本原理和统计方法结合,研究药物体内过程的群体规律的药物动力学分支学科。
溶出度:是指在规定溶出介质中,药物从片剂或 胶囊剂等固体制剂溶出的速度和程度。26溶液型药物:是以分子或离子状态分散在介质中,所以口服溶液剂的吸收是口服剂型最快,且较完全的,生物利用度高。
溶出速度:是指在一定溶出条件下,单位时间溶解度量。
溶剂化物:药物含有溶媒而构成的结晶。
肾清除率:指肾脏在单位时间内能将多少容与血浆中所含的某物质完全清楚出去,这个被完全清除了某物质的血浆容积就称为该物的血浆清除率。用CLr表示。
肾小管分泌:时将药物转运至尿中排泄,是主动转运。。
生理药物动力学模型:一种在药物的体内过程、机体的解剖学特性、生理生化参数三者之间建立一定数学关系的模型。
生物半衰期:是指药物在体内的药物量或血药浓度通过各种途径消除一半所需要的时间。
生物等效性(BE):是指一种药物的不同制剂在相同试验条件下,给以相同剂量,反映其吸收程度和速度的主要药物动力学参数无统计学差异。
生物利用度(BA):是指剂型中的药物被吸收进入体循环的速度和程度。是评价药物有效性的指标。 通常用药时曲线下浓度、达峰时间、峰值血药浓度来表示。
生物药剂学:是研究药物极其剂型在体内的吸收,分布,代谢与排泄的过程,阐明药物的剂型因素,机体生物因素和药效之间相互的科学。
时辰药物动力学:是研究药物及其代谢物在体内过程中的节律性变化以及规律和机制的科学,是介于时辰生物学和药物动力学之间的一种新的分支学科
首过效应:这种在吸收过程中,药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量的减少现象。
速率常数:是描述速度过程重要的动力学参数。速率常数越大,该过程进行也越快。单位为min-1或h-1。
体内总清除率:是指机体在单位时间内能清除掉多少体积的相当于流经血液的药物。
体外法:是利用离体生物组织样品如肝脏直接分析其药物代谢能力。
外翻肠囊法:时将动物的一定长度的小肠置于特殊的装置中通过测试药物透过肠粘膜的速度和程度,定量描述药物透黏膜性的方法。
外翻环法:为一种研究肠道组织摄取药物能力的方法。38表观分布容积;是用来描述药物在体内分布状况的重要参数,时将全血或血浆中的药物浓度与体内药量关联起来的比例常数。
维持性剂量:是药物吸收进入体循环的量与给药剂量的比值,给药制剂为参比制剂获得的药物吸收进入体循环的相对量。
胃排空:胃内容物胃幽门排入十二指肠的过程。
稳态血药浓度:临床用药若以一定的时间间隔,以相同的剂量多次给药,在给药过程中血药浓度可逐次叠加,直至血药浓度维持在一定水平或在一定水平内上下波动,该范围即称为稳态浓度,它有一个峰值(稳态时最大血药浓度) ,有一个谷值(稳态时最小血药浓度)。
吸附;是指微粒吸附在细胞表面是微粒和 细胞相互作用的开始。42融合:是由于纸质体膜中的凝脂和细胞膜的组成成分相似而产生完全缓和作用。
吸收:除血管给药外药物从给药部位进入体循环的过程。
吸收数:是预测口服药物吸收的基本变量,是反映药物在胃肠道渗透高低的函数与药物的有 效渗透率,肠道半径和药物在肠道内滞留时间有关。
细胞旁路通道转运:是指一些小分子物质经过细胞间连接处的微孔进入体循环的过 程。
细胞色素p450:是微粒体重催化药物代谢的活性成分,由一系列同功酶组成。
细胞通道转运:药物借助脂溶性或膜内蛋白的载体作用,穿过细胞而被吸收的过程。
相对生物利用度(Frel):又称比较生物利用度,是以其他非静脉途径给药的制剂为参比制剂获得的药物吸收进入体循环的相对量,是同一种药物不同制剂之间比较吸收程度与速度而得到的生物利用度。
消除:代谢与排泄过程药物被清除,合称为消除。
蓄积:当药物对某些组织有特殊的亲和性时,该组织就可能成为药物贮库,这种药物连续应用时,该组织药物浓度有逐渐升高的趋势。这种现象称为蓄积。
血脑屏障:脑组织对外来物质有选择地摄取的能力成为血脑屏障。包括:血液-脑组织屏障;血液-脑脊液屏障;脑脊液-脑屏障。
血药浓度变化率:系指稳态最大血药浓度与稳态最小血药浓差与稳态最小血药浓度比值的百分数。
血药浓度时间曲线下面积(AUC)是指血药浓度数据(纵坐标)对时间(横坐标)作图,所得曲线下面积。AUC与吸收后体循环的药量成正比,反映进入体循环药物的相对量。
压片:是在压力下把颗粒状或粉末状药物压实的过程。
药物代谢:药物被机体吸收后,在体内各种酶以及体液环境作用下,可发生一系列化学反应,导致药物化学结构上的转变。
药物的分布:是指药物从给药部位吸收进入血液后,由循环系统运送至体内各脏器、组织、体液和细胞的转运过程。
药物动力学:是应用动力学原理与数学处理方法,定量地描述药物通过各种途径进入体内的吸收,分布,代谢,排泄过程的&量时&变化或&血药浓度经时&变化动态规律的一门科学。药物跨膜转运:药物通过生物膜(细胞膜)的现象。
药物排泄:指吸收进入体内药物或经代谢后的产物排出体外的过程。
药学等效性:如果两制剂含等量的相同活性成分,具有相同的剂型,符合同样的或可比较的质量标准,则可以认为它们是药学等效性。
一级速度过程是指药物在体内某部位的转运速率与该部位的药物量成血药浓度的一次方成正比。
易化扩散:又称促进扩散,指某些物质在细胞膜载体的帮助下,由膜高浓度侧向低浓度侧扩散的过程。
载体媒介转运:借助生物膜上的载体蛋白作用,使药物透过生物膜而被吸收的过程。
治疗药物监测(TDM)又称临床药动学监测,是在药动学原理的指导下,应用灵敏快速分析技术,测定血液中或其他体液中药物的浓度,分析药物浓度与疗效及毒性间的关系,进而设计或调整给药方案。临床意义:1.使给药方案个体化,2.诊断和处理药物过量中毒3.进行临床药动学和药效学的研究4.探讨新药给药方案5.节省患者治疗时间,提高治疗成功率6.降低治疗费用7.避免法律纠纷。
滞后时间:有些口服制剂,服用后往往要经过一段时间才能吸收,滞后时间是指给药开始只血液中开始出现药物的那段时间。
主动转运:借助载体或酶促系统的作用,药物从膜低浓度侧向高浓度侧扩散的过程。
转运:药物的吸收、分布和排泄过程统称为转运。
组织隔室:浅外室为血流灌注较差的组织和器官。
组织流动室法技术:是通过化合物透过未损肠组织的实验来模拟药物体内的吸收。
剂型因素:药物的某些化学性质、药物的某些物理因素、药物的剂型及用药方法、制剂处方中所用的辅料的性质及用量、处方中药物的配伍及相互作用
生物因素:种族差异、性别差异、年龄差异、生理和病理条件的差异、遗传因素
药物的体内过程:吸收、分布、代谢、排泄
片剂口服后的体内过程有:片剂崩解、药物的溶出、吸收、分布、代谢、排泄。
生物膜的结构:细胞膜经典模型,生物膜液态镶嵌模型,晶格镶嵌模型
细胞膜的组成:①、膜脂:磷脂、胆固醇、糖脂②、少量糖类③、蛋白质生物膜性质:膜的流动性、膜结构的不对称性、膜结构的半透性膜转运途径:细胞通道转运:细胞旁路通道转运
药物通过生物膜的几种转运机制及特点
(一)、被动转运
被动转运:是指药物的膜转运服从浓度梯度扩散原理,即从高浓度一侧向低浓度一侧扩散的过程。(单纯扩散膜孔扩散)①.单纯扩散:又称脂溶扩散,脂溶性药物可溶于脂质而通过生物膜。
特点:药物的油/水分配系数愈大,在脂质层的& 溶解愈大,就愈容易扩散;大多数药物的转运方式属于单纯扩散;符合一级速率过程单纯扩散速度公式 : R=PA(c-c0)/hR为扩散速度;P为扩散常数;A为生物膜面积;(c-c0)为浓度梯度;h为生物膜厚度。若(c-c0) &c,假设(PA/h)=K,上式简化为&&&& R=PAc/h=Kc单纯扩散速度属于一级速度方程。②膜孔扩散:又称滤过,凡分子量小于100,直径小于0.4nm的水溶性或极性药物,可通过细胞膜的亲水膜孔扩散。特点: 1)膜孔扩散的药物:水、乙醇、尿素等。2)借助膜两侧的渗透压差、浓度差和电位差而扩散。③被动转运的特点:(1)从高浓度侧向低浓度侧的顺浓度梯度转运(2)不需要载体,膜对药物无特殊选择性(3)不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响(4)不存在转运饱和现象和同类物竞争抑制现象
(二)载体媒介转运:借助生物膜上的载体蛋白作用,使药物透过生物膜而被吸收的过程。&载体媒介转运:促进扩散、主动转运②.促进扩散又称易化扩散,是指某些非脂溶性药物也可以从高浓度处向低浓度处扩散,且不消耗能量。
特点:促进扩散的药物:氨基酸、D-葡萄糖、D-木糖、季铵盐类药物;吸收位置:小肠上皮细胞、脂肪细胞、脑-血脊液屏障血液侧的细胞膜中。
单纯扩散与促进扩散的比较
脂溶性药物
不需要载体
顺浓度梯度转运
顺浓度梯度转运
③.主动转运:指借助载体或酶促进系统的作用,药物从膜低浓度侧向高浓度侧的转运,又称逆流转运。(2).主动转运的药物:K+、Na+、I-、单糖、氨基酸、水溶性维生素以及一些有机弱酸、弱碱等弱电解质的离子型(3)部位:药物的主动转运主要在神经元、肾小管及肝细胞中进行。(4).主动转运的特点:逆浓度梯度转运、需要消耗机体能量、需要载体参与、速率及转运量与载体量及其活性有关、存在竞争性抑制作用、受代谢抑制剂影响、有结构特异性和部位特异性
(三)、膜动转运:是指通过细胞膜的主动变形将药物摄入细胞内或从细胞内释放到细胞外的转运过程。(胞饮(pinocytosis) :溶解物、液体 ;吞噬(phagocytosis):大分子、颗粒状物)膜动转运的药物:(1)入胞:蛋白质、多肽、脂溶性维生素、甘油三酯和重金属等,对一般药物吸收的意义不大。(2)出胞:胰腺细胞分泌胰岛素
膜转运特点: (1)不需要载体;(2)需要能量;(3)有部位特异性4、pH-分配假说:药物的吸收取决于药物在胃肠道中的解离状态和油/水分配系数。1)当酸性药物的pka值大于消化道体液pH值时(通常是酸性药物在胃中),则未解离型药物浓度Cu占有较大比例。2)当碱性药物pka值大于体液pH值时(通常是弱碱性药物在小肠中),则解离型药物浓度Ci所占比例较高
胃肠道的结构与功能①、小肠是吸收药物的主要部位,也是药物主动转运吸收的特殊部位。小肠中各种吸收机制均存在。②、一些弱酸性药物能在胃内吸收,尤其当给予溶液剂型时。胃中吸收机制主要是被动扩散。③、大部分运行至结肠的药物往往是缓释剂型、肠溶制剂或者高部位肠道中溶解不完全的残留部分。直肠近肛门端是直肠给药剂型如栓剂和其它直肠给药剂型的良好吸收部位。大肠中药物的吸收也以被动扩散为主,兼有胞饮作用。胃肠道的构造:胃、小肠(空肠、十二指肠、回肠)大肠(盲肠、结肠、直肠)
简述生物药剂学中讨论的生理因素对口服药物吸收的影响①、消化系统因素:酸性对药物吸收的影响、 胃肠液成分的影响、食物的影响、胃肠道代谢作用的影响②、循环系统因素:胃肠血流速度、肝首过效应、淋巴循环③、疾病因素:胃酸缺乏、腹泻、甲状腺功能不足、胃切除④药物转运糖蛋白
影响药物吸收的物理化学因素①解离度和脂溶性;②溶出速度:溶解度、粒子大小、多晶型、溶剂化物③稳定性
剂型因素对药物吸收的影响①剂型;②处方(辅料、药物间及药物与辅料间相互作用);③制备工艺
生物药剂学分类系统,如何提高各类型药物的生物利用度?Ⅰ型药物的溶解度和渗透率均较大,药物的吸收通常很好,改善溶解度对药物吸收影响不大。Ⅱ型药物溶解度较低,溶出是吸收的限速过程,如果药物的体内与体外溶出基本相似,且给药剂量较小时,可通过增加溶解度来改善药物的吸收;若给药剂量很大,存在体液量不足而溶出较慢的问题,仅可通过减少药物的粒径的手段来达到促进吸收的目的。Ⅲ型药物有较低的渗透性,则生物膜是吸收的屏障,药物的跨膜转运是药物吸收的限速过程,可通过改善药物的脂溶性来增加药物的吸收,可能存在主动转运和特殊转运过程。Ⅳ型药物的溶解度和渗透性均较低,药物的水溶性或脂溶性都是影响药物的透膜吸收的主要因素,药物溶解度或油/水分配系数的变化可改变药物的吸收特性,主动转运和P-gp药泵机制可能也是影响因素之一。
简述促进药物吸收的方法1、增加药物的溶解度:制成盐类(弱酸性药物制成碱金属盐;弱碱性药物制成强酸盐)制成无定型药物;加入表面活性剂;2、增加药物的表面积
OCDDS的主要类型:pH敏感型、时控型、酶解型、压力控制型
设计缓控释系统应考虑的因素?药物的油水分配系数;药物的稳定性;药物体内吸收特性;昼夜节律;药物的运行状态
口服结肠迟释剂的几种类型及设计依据?类型&&pH敏感型;时控型;酶解型;压力控制型;设计依据&&①结肠液pH值最高(6.5-7.5或更高)②胃排空1-4h,小肠转运3-5h,口服后到达结肠约在5h左右③结肠中含有丰富的菌群④结肠为水分吸收主要区域,内容物粘度增加而使肠腔压力较大
各种注射给药途径的特点① 静脉注射:注射容量一般小于50mL;药物直接进入血循环,注射结束时血药浓度最高;不存在吸收过程,生物利用度100%;存在&肺首过效应&。②肌内注射:注射容量2&5mL;有吸收过程,药物以扩散及滤过两种方式转运,存在&肺首过效应&。③皮下与皮内注射:吸收速度:大腿皮下﹥上臂﹥腹部。皮内注射一般作皮肤诊断与过敏试验④其他部位注射:动脉内注射、腹腔内注射、鞘内注射
影响注射给药吸收的因素?生理因素(吸收速度:上臂三角肌﹥大腿外侧肌﹥臀大肌);药物理化性质;剂型因素
影响口腔黏膜吸收的因素?生理因素、剂型因素
药物经皮肤转运的途径?1、药物渗透通过皮肤吸收进入血液循环的途径:表皮途径(主要途径)透过角质层和表皮进入真皮,被毛细血管吸收进入血液循环。皮肤附属器途径(非主要)通过毛囊、皮脂腺和汗腺,渗透速度比表皮途径快。(离子型及水溶性大分子药物)2、药物扩散通过角质层的途径(1)通过细胞间隙扩散(主要)角质层细胞间隙是类脂分子形成的多层脂质双分子层,类脂分子的亲水部分结合水分子形成水性区,而类脂分子的烃链部分形成疏水区。极性分子经角质层细胞间隙的水性区渗透,而非极性分子经由疏水区渗透。(2)通过细胞膜扩散致密交联的蛋白网状结构和微丝角蛋白和丝蛋白的规整排列结构均不利于药物扩散
影响药物经皮渗透的因素?生理因素、剂型因素、透皮吸收促进剂、离子导入技术的应用
药物鼻黏膜吸收的途径:经细胞的脂质通道(脂溶性药物)&&主要途径;细胞间的水性孔道(亲水性或离子型药物)
影响鼻腔吸收的因素:生理因素;剂型因素:药物的脂溶性和解离度、药物的相对分子质量和粒子大小、吸收促进剂与多肽类药物的吸收
影响直肠药物吸收的因素:生理因素;剂型因素(药物的脂溶性与解离度、药物的溶解度与粒度、基质的影响)吸收促进剂
药物经眼吸收的途径:经角膜渗透、药物经结膜吸收。
影响药物眼部吸收的因素:角膜的通透性;角膜前影响因素: 眼用制剂角膜前流失是影响其生物利用度的重要因素;渗透促进剂的影响:EDTA,牛磺胆酸,癸酸,皂甙;给药方法的影响
例举可以避免肝首过效应的主要途径①静脉、肌肉注射:静脉注射直接进入体循环,因此不存在首过效应;肌肉注射经毛细血管吸收进入体循环,不经门肝系统,因此亦不存在首过效应。②口腔黏膜吸收:口腔粘膜下有大量的毛细血管汇总至颈内动脉,不经肝脏而直接进入心脏,可绕过肝脏的首过效应。一般可制成口腔粘膜贴片。③经皮吸收:药物应用到皮肤上后,首先从制剂中释放到皮肤表面,溶解的药物分配进入角质层,扩散通过角质层到达活性表皮的界面,再分配进入水性的活性表皮,继续扩散到达真皮,被毛细血管吸收进入血液循环,可避开门肝系统。④经鼻给药:鼻粘膜内血管丰富,鼻粘膜渗透性高,有利于全身吸收。药物吸收后直接进入体循环,无首过效应。⑤经肺吸收:肺泡表面积大、含有丰富的毛细血管和极小的转运距离,因此肺部给药吸收迅速,而且吸收后的药物直接进入血液循环,不受肝首过效应的影响。⑥直肠给药:栓剂距肛门2cm处,可使大部分药物避开肝首过作用,给药生物利用度远高于4cm给药。当栓剂距肛门6cm处给药时,大部分药物经直肠上静脉进入门静脉-肝脏系统。
决定药物被组织摄取和积蓄的主要因素是组织器官的血液灌流速度和药物与组织器官的亲和力。而药物与组织器官的亲和力主要和药物的结构、解离度、脂溶性以及蛋白质结合率有关。通常血流丰富的组织蛇舞药物的速度快。
表观分布容积的意义①Vd值它代表药物透膜转运和分布到体内各部位的特性。是由药物的理化性质决定的常数。②Vd=D/C反映药物剂量与血药浓度的关系,利用此公式,若测得血药浓度,乘以其表观分布容积,即可求得药物在体内的总量。对指导临床用药具有重要意义。
药物血浆蛋白结合和组织蛋白结合对表观分布容积和药物消除有何影响?当药物主要与血浆蛋白结合时,其表观分布容积小于它们的真实分布容积;而当药物主要与血管外的组织结合时,其表观分布容积大于它们的真实分布容积。蛋白结合率高的药物,通常体内消除较慢。
讨论药物蛋白结合率的临床意义药物与血浆蛋白结合,能降低药物的分布与消除速度,延长作用时间,并有减毒和保护机体的作用。若药物与血浆蛋白结合率很高,药物作用将受到显著影响。由于药理作用主要和血中游离药物浓度有关,因此血中游离药物浓度的变化是影响药效的重要因素。
为什么弱碱药物比弱酸性药物易透过血脑屏障?在血浆pH7.4时,弱酸性药物主要以解离性存在,而弱碱性药物主要以非解离型存在。一般来说,弱碱性药物容易向脑脊液转运。如水杨酸和奎宁在血浆pH7.4时,非离子型分别为0.004%-0.01%和9.09%,向脑脊液透过系数分别为0. min-1和0.078min-1
提高药物脑内分布的方法①颈动脉灌注高渗甘露醇溶液,使血脑屏障暂时打开,增加药物入脑②对药物结构进行改造,引入亲脂性基团,制成前药,增加化合物脂溶性③使用聚氰基丙烯酸酯、聚乳酸、乳酸&羟基乙酸共聚物等高分子材料,将药物装载制成纳米粒,可提高药物的脑内分布④利用脑毛细血管内皮细胞上存在的特异性载体⑤通过鼻腔途径给药,可以使药物绕过血脑屏障,直接进入脑组织
影响微粒给药系统体内分布的因素有哪些?细胞与微粒之间的相互作用,包括内吞作用、吸附作用、融合作用、膜间作用等;微粒本身的理化性质,包括粒径、电荷、表面性质的影响;微粒的生物降解;机体的病理生理状况。
药物代谢酶系主要有哪些?简述它们的作用。答:代谢酶常分为微粒体系酶和非微粒体系酶二大类(1)微粒体药物代谢酶系:微粒体酶系主要存在于肝细胞或其他细胞(如小肠粘膜、肾、肾肾上腺皮质细胞等)的内质网的亲脂性膜上。其中最重要的一族氧化酶,被称为肝微粒体混合功能氧化酶系统或称为单加氧酶。该酶系催化的氧化反应类型极为广泛,是药物体内代谢的主要途径。(2)非微粒体酶系:非微粒体酶在肝内和血浆、胎盘、肾、肠粘膜及其他组织中均有存在,在体内除与葡萄糖醛酸结合外的其他缩合,以及某些氧化、还原及水解(除酰胺键外)反应均为该酶系所催化。通常凡是结构类似于体内正常物质、脂溶性较小、水溶性较大的药物都有这组酶系代谢。
影响药物代谢的因素①给药途径对药物代谢的影响②、给药剂量和剂型对药物代谢的影响③药物的光学异构特性对药物代谢的影响④酶抑制和诱导作用对药物代谢的影响⑤生理因素对药物代谢的影响
试从干预药物代谢过程的角度出发,举例说明高效药物制剂设计的原理。根据药酶抑制剂的性质,可设计利用一个药物对药酶产生抑制,从而来减少或延缓另一个药物的代谢,达到提高疗效或延长作用时间的目的。以左旋多巴为例,为了减少脱羧酶的脱羧作用,设计将脱羧酶抑制剂和左旋多巴同时应用,组成复方片剂。如采用的脱羧酶抑制剂甲基多巴肼和盐酸羟苄丝肼。它们可抑制小肠、肝、肾中的脱羧酶的活性,故能抑制左旋多巴的脱羧作用。且不能透过血脑屏障。这两种脱羧酶抑制剂既能抑制外周左旋多巴的代谢,增加进入中枢的左旋多巴的量,又能使摄入脑内的左旋多巴顺利的转换成多巴胺,进而发挥药理作用,大大降低了左旋多巴的给药剂量。
药物肾排泄的三种机制:肾小球滤过、肾小管分泌和肾小管重吸收
影响肾小球滤过的因素:通透性(①.肾小球毛细血管内皮极薄,其上分布着很多直径约为6~10nm的小孔,通透性较高②除血细胞和大分子蛋白质之外,血浆中的水和小分子物质均被滤入肾小囊③只有未结合的药物才可以从肾小球滤过)滤过压(①滤过压与肾血流和肾小球毛细血管内的静压力密切相关②肾小球滤过是一种加压滤过③肾小球过滤的主要动力是肾小球毛细血管中的静水压)滤过率(①直接测定GFR(困难)②由清除率计算肾小球滤过率)
影响肾小球滤过的因素:以菊粉清除率为指标,可以推测其他各种物质通过肾单位的变化。①若某一物质只有肾小球滤过,且所有滤过的物质均随尿排泄,则肾清除率等于菊粉清除率②若某一物质的肾清除率低于菊粉清除率,表示该物质从肾小球过滤后有一部分被肾小管重吸收③若肾清除率高于菊粉清除率,则表示出肾小球滤过外,还有一部分通过肾小管分泌排泄
影响肾小管重吸收的因素①药物的脂溶性:脂溶性大的非解离型药物重吸收程度大,自尿中排泄量小②尿pH值和药物的pKa:对于弱酸来说,pH升高将增加解离程度,重吸收减少,肾清除率增加。对于强碱性药物,在任何尿pH范围内均呈解离状态,几乎不被重吸收,其肾清除率也不受尿pH值得影响且常较高。③尿量:当尿量增加时,药物在尿液中的浓度下降,重吸收减少;尿量减少时,药物浓度增大,重吸收量也增多
肾小管主动分泌的特征:需载体参与;需要能量,可受ATP酶抑制剂二硝基酚抑制;由低浓度向高浓度逆浓度梯度转运;存在竞争抑制作用;有饱和现象;血浆蛋白结合率一般不影响肾小管分泌速度
肾清除率的意义推测药物排泄机制:肾清除率等于fu*GFR,只有肾小球滤过,所有滤过物质均由尿排泄。肾清除率低于fu*GFR,表示该物质从肾小球滤过后一定有肾小管重吸收,可能同时伴有分泌,但一定小于重吸收。肾清除率高于fu*GFR,表示除由肾小球滤过外,肯定存在肾小管分泌排泄,可能同时存在重吸收,但必定小于分泌。
肝肠循环及对药物作用的影响:肠肝循环是指由胆汁排泄到小肠中的药物或其代谢物,在小肠中又被重吸收返回肝门静脉血的现象。有肠肝循环的药物在体内贮留时间长,某些药物血药浓度形成双吸收峰。
什么是生物药剂学?它的研究意义及内容是什么?生物药剂学是研究药物及其剂型在体内的吸收、分布、代谢、与排泄过程,阐明药物的剂型因素,集体生物因素和药物疗效之间相互关系的科学。研究内容有:研究药物的理化性质与体内转运的关系;研究剂型、制剂处方和制剂工艺对药物体内过程的影响;根据机体的生理功能设计缓控释制剂;研究微粒给药系统在血液循环体统的转运,为靶向给药系统设计奠定基础;研究新的给药途径与给药方法;研究中药制剂的溶出度和生物利用度。
何为药物在体内的排泄、处置与消除?药物或其代谢产物排出体外的过程称为排泄。药物的分布、代谢和排泄过程称为处置。代谢与排泄过程药物被清除,合称为消除。
片剂口服后的体内过程有片剂崩解、药物的溶出、吸收、分布、代谢、排泄。
简述生物药剂学研究在新药开发中作用。研究药物的理化性质与体内转运的关系,设计新药或提高制剂的质量;研究剂型、制剂处方和制剂工艺对药物体内过程的影响,设计合理与优质的新剂型;研究机体的生理功能对药物吸收的影响,设计缓控释制剂;研究微粒给药系统在血液循环的转运,为靶向给药系统奠定基础;通过对药物体内过程的研究,研究药物的转运机制、影响药物的吸收因素,开放药物新的给药方法;研究中药制剂的溶出度与生物利用度,指导中药新药的开放、研制。
简述载体媒介转运的分类及特点。载体媒介转运分为促进扩散与主动转运。促进扩散过程需要载体,顺浓度梯度转运不消耗能量,存在结构类似物的竞争和载体转运饱和。主动转运过程需要载体,逆浓度梯度,消耗能量,与细胞代谢有关,受代谢抑制剂的影响,结构转运的速率与数量受载体数量与活性影响,结构类似物转运抑制,存在结构特异性和部位特异性。
已知某药物普通口服固体剂型生物利用度只有5%,与食物同服生物利用度可提高近一倍。试分析影响该药物口服生物利用度的因素可能有哪些,拟采用哪些方法改善?1、影响该药物口服生物利用度的因素有很多,药物本身生物利用度低可能是由于药物的吸收差或受到胃肠分泌的影响。与食物同服,可促进胃排空速率加快,药物进入小肠,在肠内停留时间延长;脂肪类食物可促进胆汁分泌,而胆汁可促进难溶性药物溶解吸收。剂型因素也有很大影响,药用辅料的性质与药物相互作用均影响其生物利用度。2、提高药物的生物利用度可将难溶性药物制成可溶性盐、无定形药物或加入表面活性剂;改变剂型增大药物表面积;制成复方制剂或改变制剂促使酶代谢饱和等;制成前体药物。
简述促进口服药物吸收的方法增加药物的溶出速度:增加药物的溶解度,包括制成可溶性盐、制成无定形药物、加入表面活性剂、制成亚稳定型状态,采用亲水性包合材料;增加表面积药物,减小粒径:制成固体分散体、采用微粉化技术。 加入吸收促进剂促进药物透膜吸收
可采用什么给药途径避免肝首过效应?试结合各给药途径的生理特点说明其避免首过效应的原理。可通过改变给药途径尽量避免首过效应,尤其是肝首过效应。主要途径有:1静脉、肌肉注射:静脉注射直接进入体循环,因此不存在首过效应;肌肉注射经毛细血管吸收进入体循环,不经门肝静脉,因此也不存在首过效应。
2口腔黏膜吸收:口腔黏膜下有大量毛细血管汇总至颈内静脉,不经肝脏而直接进入心脏,可绕过肝首过效应。一般可制成口腔贴片给药。3经皮吸收:药物应用到皮肤上后,首先从制剂中释放到皮肤表面,溶解的药物分配进入角质层,扩散通过角质层到达活性表皮的界面,再分配进入水性的活性表皮,继续扩散到真皮,被毛细血管吸收进入血液循环,可避开门肝系统。4经鼻给药:鼻粘膜内血管丰富,鼻粘膜渗透性高,有利于全身吸收。药物吸收后直接进入体循环,无首过效应5经肺吸收:肺泡表面积大,含有丰富的毛细血管和极小的转运距离,因此肺部给药吸收迅速,而且吸收后药物直接进入血液循环,不受肝首过效应影响。6直肠给药:栓剂距肛门2cm处,可使大部分药物避开肝首过效应,给药生物利用度远高于距肛门4cm处。当栓剂距肛门6cm处给药时,大部分药物经直肠上静脉进入静脉-肝脏系统。淋巴循环也有助于药物吸收,经淋巴吸收的药物可避开肝代谢作用。
10. 试述影响经皮给药的影响因素。生理因素;皮肤的渗透性存在个体差异,药物经皮给药速率随身体部位而异,这种差异主要由于角质层厚度及皮肤附属器密度不同引起的。身体各部位皮肤渗透性大小为阴囊&耳后&腋窝区&头皮&手臂&腿部&胸部。角质层厚度也与年龄、性别等多种因素有关。老人和男性的皮肤较儿童、妇女的渗透性低。剂型因素:对于经皮给药系统的候选药物,一般以剂量小、药理作用强者较为理想。角质层的结构限制了大分子药物渗透的可能性,分子量大于600的药物不能自由通过角质层。药物的熔点也影响经皮渗透的性能,低熔点容易渗透通过皮肤。透皮吸收促进剂:应用经皮吸收促进剂可提高药物的经皮吸收。
11. 如何通过药剂学途径增加药物的淋巴转运?由于大分子药物和微粒等容易通过淋巴管转运,药剂学通常采用现代制剂技术,制备脂质体、微乳、微粒、纳米粒、复合乳剂等各种载药系统,来增加药物的淋巴转运。
12. 为什么微粒在体内的半衰期很短,如何延长微粒在血液中循环时间?常规设计的微粒给药系统在体内很快就被网状内皮系统的单核巨噬细胞吞噬,因此半衰期很短。通过改善微粒的亲水性、增加微粒的柔韧性及其空间位阻,干扰吞噬细胞对微粒的识别过程。目前最常用的方法就是采用表面修饰技术,该技术通过一定的化学反应,将非离子型聚合物以共价键的方式引入到微粒表面,既提高了微粒的亲水性和柔韧性,又明显增加了微粒的空间位阻,使微粒具有隐蔽性,不易被识别,从而达到长循环的目的。
药物动力学研究内容有哪些?药物动力学模型的建立;预测不同给药方案下的血浆、组织和尿液的药物浓度;探讨药物浓度与药物疗效或毒性之间的关系;估算药物或代谢产物的可能积蓄;探讨药物结构与药物动力学及药效学之间的关系;探讨生理或疾病的变化如何影响药物的吸收、分布、和消除;探讨药物剂型因素与药物动力学之间的关系,开发新型给药系统;根据药物动力学参数进行临床药物治疗方案的制定;从药物动力学观点对药物质量进行认识和评价;新药的生物利用度和生物等效性研究。
试述口服给药二室模型药物的血药浓度- 时间曲线的特征?血药浓度-时间曲线图分为三个时相:1)吸收相,给药后血药浓度持续上升,达到峰值浓度,在这一阶段,药物吸收为主要过程;2)分布相,吸收至一定程度后,以药物从中央室向周边室的分布为主要过程,药物浓度下降较快;3)消除相,吸收过程基本完成,中央室与周边室的分布趋于平衡,体内过程以消除为主,药物浓度渐渐衰减。
重复给药与单剂量给药的药物体内过程有何不同?与单剂量给药不同的是,重复给药时,由于第二次给药前体内药物尚未消除完全,所以体内药物量在重复给药后逐渐积蓄。随着不断给药,体内药物量不断增加,经过一段时间后达到稳态。稳态时,药物在体内的消除速率等于给药速率,血药浓度维持在稳态,即在一恒定的范围内波动。
何为非线性药物动力学?非线性药物动力学与线性药物动力学有何区别?有些药物的吸收、分布和体内消除过程,并不符合线性药物动力学的特征,其主要表现为一些药物动力学参数随剂量不同而改变,这种药物动力学特征称为非线性药物动力学。线性药物动力学的基本特征是血药浓度与体内药物量成正比。在线性药物动力学中,药物的生物半衰期、消除速率常数及清除率与剂量无关,血药浓度-时间曲线下面积与剂量成正比关系,当剂量改变时,其相应的时间点上的血药浓度与剂量成正比的改变。而非线性药物动力学则表现为血药浓度及血药浓度-时间曲线下面积与剂量不成正比,药物动力学参数如生物半衰期、清除率等表现为剂量依赖性。
药物在体内哪些过程易出现非线性药物动力学?与药物代谢有关的可饱和的酶代谢过程;与药物吸收、排泄有关的可饱和的载体转运过程;与药物分布有关的可饱和的血浆/组织蛋白结合过程;酶诱导及代谢产物抑制等其他特殊过程
为什么在药动学中应用统计矩。室模型分析已广泛应用于药物动力学研究,但它并不适用于所有药物。当某些药物分布非常缓慢时,其体内过程并不严格按室模型进行,对它进行严密的药物动力学分析非常复杂。在多室模型的药物动力学分析中,也存在相似的问题。应用简单的统计矩理论,可解析、处理和表征药物的动力学特征。应用于药物动力学研究的统计矩分析,是一种非隔室的分析方法。它不需对药物设定专门的隔室,也不必考虑药物的体内隔室模型特征。目前,这种方法主要用于...
分享这篇日志的人也喜欢
热门日志推荐
人人最热标签
分享这篇日志的人常去
北京千橡网景科技发展有限公司:
文网文[号··京公网安备号·甲测资字
文化部监督电子邮箱:wlwh@··
文明办网文明上网举报电话: 举报邮箱:&&&&&&&&&&&&
请输入手机号,完成注册
请输入验证码
密码必须由6-20个字符组成
下载人人客户端
品评校花校草,体验校园广场

我要回帖

更多关于 改善血液循环的药物 的文章

 

随机推荐