新生儿串联质谱仪筛c5偏高,数值0.52,会不会影响宝宝发育

o 内分泌遗传代谢疾病研究
新生儿筛查疑诊3-甲基巴豆酰辅酶A羧化酶缺乏症患儿的随访及基因分析
: 409-414. DOI: 10.3760/cma.j.issn.14.06.003
摘要 目的了解新生儿筛查疑诊3-甲基巴豆酰辅酶A羧化酶缺乏症(MCCD)患儿的临床转归;了解中国3-甲基巴豆酰辅酶A羧化酶(MCC)基因突变谱及热点突变。方法2011年9月至2013年3月,将在上海交通大学医学院附属新华医院接受新生儿筛查,并疑诊为MCCD的42例患儿(男33例,女9例)纳入本研究,根据新生儿筛查召回时血C5-OH浓度、母亲血C5-OH浓度及尿3-MCG、3-HIVA,将42例患儿分为三组:母源性MCCD组5例、良性MCCD组6例、疑似MCCD组31例。对所有患儿的生长、智能发育等随访资料进行回顾分析;对部分患儿进行MCC基因突变检测,分析基因新变异对蛋白结构及功能的影响。结果(1)42例患儿末次随访的中位年龄29个月,最长随访至9岁。所有患儿临床无症状,生长及智能发育正常。(2)29例患儿(母源性MCCD组4例、良性MCCD组4例,疑似MCCD组21例)接受基因检测,母源性MCCD及良性MCCD基因诊断符合临床诊断;疑似MCCD 21例中仅11例检出1个MCCC1突变,余10例未检出突变。检出的14种突变中MCCC1突变占86%(12/14),其中c.ins1680A突变占40%,发现9种新突变:211AG&CC/p.Q74P、c.295G&A/p.G99S、c.764A&C/p.H255P、c.964G&A/p.E322K、c.1331G&A/p.R444H、c.1124delT、c.39_58del20、c.1518delG、c.639+2T&A;5种新错义突变位点多为高度保守氨基酸,经分析这些突变改变了蛋白二级结构,预测对蛋白功能造成影响。(3)母源性MCCD患儿筛查、召回及末次随访的血C5-OH浓度分别为3.50(1.63~11.43)、1.84(1.00~9.30)、0.27(0.26~5.81) μmol/L,呈下降趋势;良性MCCD组患儿筛查、召回及末次随访的血C5-OH浓度分别为8.20(3.60~9.60)、9.67(3.88~20.15)、23.0(5.87~49.10) μmol/L,呈上升趋势;疑似MCCD患儿筛查及随访血C5-OH浓度均&2 μmol/L。良性MCCD组4例患儿召回时尿特异性指标3-MCG均增高。结论疑诊MCCD患儿最长随访至9岁,临床均无症状、体格及智能发育正常;中国患儿MCCC1突变多见,发现9种新突变,c.ins1680A可能是热点突变。
新生儿筛查疑诊3-甲基巴豆酰辅酶A羧化酶缺乏症患儿的随访及基因分析
[J].&中华儿科杂志,2014,52(
): 409-414. DOI: 10.3760/cma.j.issn.14.06.003
基金 &关键词
English Abstract
视频 0 论文 0 大综述 0
以下内容和版式版权归属中华医学会,未经授权不得转载
3-甲基巴豆酰辅酶A羧化酶缺乏症(3-methylcrotonyl-coenzyme A carboxylase deficiency,MCCD)(OMIM210)是一种常染色体隐性遗传的有机酸代谢病,由于编码3-甲基巴豆酰辅酶A羧化酶(3-methylcrotonyl-coenzyme A carboxylase,MCC)两个亚单位α、β的基因MCCC1(MIM 609010)或MCCC2(MIM 609014)突变导致亮氨酸代谢途径中MCC缺乏所致[]。国外报道新生儿MCCD患病率约1/36000[,,],国内尚无报道。该疾病临床表型变异大,多数为良性MCCD(无症状),少数有神经系统症状(精神运动发育迟缓、脑水肿、抽搐、肌张力异常等)[],也有母源性MCCD的报道[,]。MCCD不能通过常规生化检测进行诊断,需要依靠血串联质谱(MS/MS)酰基肉碱浓度的测定及尿气相色谱质谱(GC/MS)有机酸代谢产物分析,诊断依据为血3-羟基异戊酰肉碱(3-hydroxy-isovalerylcarnitine,C5-OH)增高、尿3-甲基巴豆酰甘氨酸(3-methylcrotonyl-glycine,3-MCG)和(或)3-羟基异戊酸(3-hydroxy-isovalerate,3-HIVA)增高[,]。上海交通大学医学院附属新华医院自2003年采用MS/MS进行新生儿遗传代谢病(包括MCCD)的筛查,发现了一些无症状的良性MCCD患儿,也发现不少新生儿血C5-OH浓度轻度增高,尿3-MCG或3-HIVA轻微升高或正常,临床诊断困难。因此,自2011年9月至2013年3月我们对42例筛查疑诊的MCCD患儿进行临床随访资料的回顾分析,旨在了解患儿的临床转归;并通过对部分患儿MCC基因突变分析,了解中国MCC基因突变谱。对象和方法一、研究对象年新生儿MS/MS筛查召回后,发现67例患儿血C5-OH浓度高于阳性切值(0.6 μmol/L),将其中具有完整诊断及随访记录的42例患儿(男33例,女9例)纳入本研究。42例筛查召回时血C5-OH浓度为[0.84(0.61~20.15)μmol/L]。根据新生儿筛查召回时血C5-OH浓度、母亲血C5-OH浓度及尿3-MCG、3-HIVA代谢产物,结合临床经验将42例临床诊断初步分为三组:(1)母源性MCCD组5例,患儿母亲血C5-OH浓度增高[(5.11~21.77)μmol/L],伴尿3-MCG及3-HIVA增高;患儿召回时血C5-OH浓度[1.88(1.01~9.37)] μmol/L;2例伴尿3-MCG或3-HIVA轻微增高[];(2)良性MCCD组6例,召回血C5-OH浓度为[6.95(2.46~20.15)] μmol/L,均&2 μmol/L。其中4例伴尿3-MCG增高[114(2.28~218)(正常0)]及3-HIVA增高[552(52~1575)(正常&2.3)]; (3)疑似MCCD组31例:血C5-OH浓度(0.6~2)μmol/L,仅5例伴尿3-MCG轻微增高2.73(2.5~4.31)或3-HIVA轻度增高5.96(3.49~14.94)。选择50例与本研究疾病无相关的患儿作为基因分析对照组,本研究通过医院伦理委员会批准(XHEC-D-)。二、研究方法1.临床资料回顾分析:42例患儿自筛查诊断后,通过门诊及电话进行随访,包括身高、体重、智能发育的评估以了解生长发育情况;肝肾功能、血乳酸的检测以了解有无代谢危象出现。2.基因诊断及分析(1)基因突变检测:在父母知情同意下,采集患儿及其父母外周血DNA;参考文献[]及Premier 5软件设计PCR引物,PCR扩增MCCC1 19个外显子和MCCC2 17个外显子及两端内含子序列,测序,Chromas软件分析突变(参考MCCC1 GenBank NM_及MCCC2 GenBank NM_)。(2)基因新变异的证实:①对50例对照组患儿DNA进行基因相应突变位点测序以排除多态性;②父母DNA测序明确遗传来源;③ PCR-限制性片段长度多态性(PCR-RFLP)分析;④ Clustal (1.81)软件对不同物种突变位点氨基酸比对分析;⑤ PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2)、SIFT (http://sift.jcvi.org/)、UniProt(http://www.uniprot.org/)和PDB(http://www.rcsb.org/pdb/home/home.do)软件预测新错义变异对蛋白结构及功能的影响。3.基因诊断患儿的生化特点分析:基因分析判断标准为:母源性MCCD组患儿的母亲携带MCC 2个突变,患儿携带来自母亲的1个突变;良性MCCD组患儿携带2个基因突变;疑似MCCD组患儿如检出1个突变可能为MCCD杂合子,或未检出突变。总结各组患儿在新生儿筛查、召回及末次随访时血C5-OH浓度的变化及召回时尿3-MCG异常增高的比例,以了解不同基因突变携带者的生化特点。三、统计学处理应用SPSS 16.0软件进行统计学分析。非正态分布的计量资料用中位数(范围)表示。各组患儿新生儿筛查、召回及末次随访血C5-OH浓度差异比较采用多个相关样本非参数检验(非正态),以P&0.05为差异有统计学意义。结果一、临床随访情况42例患儿中2例良性MCCD患儿曾用生物素、左旋肉碱或无亮氨酸特殊奶粉分别治疗4个月及2年,因代谢指标无明显改善而停止治疗,其他均未治疗。末次随访年龄29个月(1个月~8.8岁),其中24例&2岁,12例2~6岁,6例&6岁。所有患儿临床均无症状,肝肾功能、乳酸等生化指标均正常。二、基因诊断及分析1.基因突变:42例患儿中29例(母源性MCCD组4例、良性MCCD组4例,疑似MCCD组21例)接受基因检测,其中19例患儿检出基因突变。母源性MCCD组4例均检测到来自母亲的1个基因突变(3例为MCCC1突变,1例为MCCC2突变),为MCCD杂合子,均符合临床诊断[];良性MCCD组4例,均检测到2个基因突变(3例为MCCC1复合杂合突变,1例为MCCC2复合杂合突变),均符合临床诊断;21例疑似MCCD中仅11例检出1个MCCC1突变,考虑为MCCD杂合子可能,其余10例未检出突变。19例患儿中检出14种突变,其中MCCC1突变12种,占86%(12/14),包括c.203C&T/p.A68V、c.572T&C/ p.L191P、c.ins1680A、c.764A&C/ p.H255P、c.639+2T&A、c.295G&A/ p.G99S、c.39_58del20、c.1331G&A/ p.R444H、c.211AG&CC/ p.Q74P、c.964G&A/ p.E322K、c.1124delT、c.1518 delG;错义突变占58%(7/12)、3种缺失突变、1种剪切突变及1种插入突变;c.ins1680A是热点突变,占40%(8/20);12种突变中后9种突变未见报道()。发现MCCC2错义突变2种(c.592C&T/p.Q198X、c.518C&T/ p.S173L )均已报道。图19种MCCC1新突变测序图图19种MCCC1新突变测序图2.基因新变异分析:9种MCCC1基因新变异均来源于父亲或母亲,并排除多态性可能。c.639+2T&A突变后剪切位点分数变为0,为致病性的剪切突变,但未获得RNA标本进行验证;5种新错义突变分析如下:(1)PCR-RFLP分析:采用BsrGI对c.211AG&CC突变酶切分析,携带此杂合突变的父子酶切产生253、142和111 bp三片段();采用Sau96I内切酶对c.295G&A突变酶切分析,携带此杂合突变的患者酶切产生214、84和130 bp三片段();与正常对照者产酶切条带不同。图2PCR-RFLP酶切图图2PCR-RFLP酶切图(2)不同物种氨基酸序列比对分析:5种MCCC1新错义突变(p.Q74P、p.G99S、p.H255P、p.E322K及p.R444H )经6个不同物种与人类基因相应位点氨基酸比对分析,MCCC1第99、255、322、444位均为高度保守氨基酸,第74位为中度保守氨基酸。(3)新错义突变对蛋白功能影响的预测:MCCC1 5种新错义突变经PolyPhen-2及SIFT分析显示,除c.211AG&CC评分值分别为0.64及0.01外,其余突变的PolyPhen-2评分值为0.99~1,SIFT的评分值均为0,预测这些突变可能对蛋白功能造成影响。(4)新错义突变对蛋白质构象改变分析:通过UniProt和PDB软件对MCC蛋白二级结构分析,5种MCCC1新错义突变位于蛋白质活性部位,改变了蛋白的侧链结构:①c.211AG&CC/p.Q74P突变导致74位谷氨酰胺变为脯氨酸,与50位苏氨酸主链形成新氢键,氨基酸残基减小,具有更强的疏水性();②c.295G&A/p.G99S突变导致99位甘氨酸变为丝氨酸,产生的侧链与105位谷氨酰胺主链形成新氢键,氨基酸残基增大(),无法匹配蛋白质的核心区域而影响蛋白活性;③ c.764A&C/p.H255P突变导致255位组氨酸变为脯氨酸,与322位谷氨酸侧链间氢键消失,氨基酸残基减小();④c.964G&A/p.E322K突变导致322位谷氨酸变为赖氨酸,与255位组氨酸侧链间氢键消失,氨基酸残基增大,且电性由负电变为正电,引起蛋白核心区分子间排斥而影响蛋白功能();⑤ c.1331G&A/p.R444H突变导致444位精氨酸变为组氨酸,与479位苯丙氨酸主链间氢键消失,氨基酸残基减小,电荷由正电转为中性,可能造成分子间排斥而影响蛋白功能()。图35种新错义突变改变MCC蛋白二级结构示意图图35种新错义突变改变MCC蛋白二级结构示意图三、29例基因诊断患儿的生化特点29例患儿在新生儿筛查时、召回时及末次随访时的血C5-OH浓度变化及召回时尿特异性指标3-MCG异常增高比例见。母源性MCCD组患儿血C5-OH浓度高低差异大,但呈明显的下降趋势,其中2例患儿随访后血C5-OH浓度已降至正常;而良性MCCD组血C5-OH浓度均较高&3 μmol/L,并呈明显上升趋势,因两组例数太少,各时间段C5-OH浓度差异无统计学意义。疑似MCCD组患儿血C5-OH浓度均&2 μmol/L,各时间段变化差异有统计学意义(χ2=12.226,P&0.01),但其中5例患儿血C5-OH浓度已降至正常。良性MCCD组患儿召回时尿特异性指标3-MCG均增高,而母源性MCCD组及疑似MCCD组中尿3-MCG增高例数极少。表129例患儿血、尿代谢产物浓度[M(范围)]表129例患儿血、尿代谢产物浓度[M(范围)]母源性MCCD43.50(1.63~11.43)1.84(1.00~9.30)0.27(0.26~5.81)1良性MCCD48.20(3.60~9.60)9.67(3.88~20.15)23.00(5.87~49.10)4疑似MCCD210.94(0.51~1.55)0.76(0.60~1.33)1.10(0.28~2.14)2讨论MCCD患儿临床表型变异较大,多数为无症状的良性MCCD,少数(&10%)可表现为严重的神经系统受损,国内外均有个案报道[,];母源性MCCD较少见,即母亲为无症状的良性MCCD患者,其增高的C5-OH通过母乳或胎盘传输给杂合子的子女,导致新生儿筛查血C5-OH浓度暂时性增高[,]。因此,对新生儿MS/MS筛查发现血C5-OH增高,结合尿有机酸代谢产物分析,排除了其他导致C5-OH增高的遗传代谢病(如多种酰基CoA羧化酶缺乏症、3-羟-3-甲基戊二酰CoA裂解酶缺乏症、3-甲基戊二酰CoA水解酶缺乏症及β-酮硫解酶缺乏症)[]后考虑MCCD可能,尚需常规对母亲进行MS/MS分析,以明确母源性MCCD(患儿为杂合子),这些患儿血C5-OH浓度增高为暂时性,继续随访后其他患儿血浓度也会降至正常。良性MCCD组患儿筛查时血C5-OH浓度明显增高(2~3) μmol/L,召回后血浓度继续升高,伴尿3-MCG和3-HIVA明显增高。文献报道对这些患儿一般无需治疗,随访数年至10年仍无症状[,],本组患儿临床随访最长至9岁,虽血、尿代谢指标仍异常升高,但临床仍无症状,母源性MCCD患儿的母亲也是良性MCCD患者,成年期及分娩期均无症状[]。但对患儿仍需要长期随访,尤其在应激情况下如严重感染、外伤等,需要密切观察,一旦出现症状仍需要治疗,如限制亮氨酸或蛋白质饮食、补充左旋肉碱等[]。然而筛查发现一些患儿血C5-OH浓度轻度增高(&2 μmol/L),召回后血C5-OH浓度有下降,但随访后多数患儿血C5-OH浓度仍增高,尿3-MCG及3-HIVA正常或轻微增高,或仅有3-HIVA增高,对这些疑似患儿的诊断需谨慎,可通过基因突变分析进行诊断。我们临床诊断的4例母源性MCCD及4例良性MCCD患儿通过基因分析均证实了临床诊断;而21例临床疑似者经基因分析显示携带1个基因突变(MCCD杂合子可能)及未检出突变约各占50%。有文献报道杂合子也可引起代谢物增高或MCC活性降低[,,],而未检出突变者也不能完全排除诊断,可能另有其他因素影响,或由于筛查阳性切值偏低所致的假阳性可能。因此,在具备一定的技术条件下,对这些疑似患儿可进一步进行MCC酶活性测定以排除MCCD。MCCD由于MCCC1和MCCC2两种基因突变所致。MCCC1定位3q25-27,含19个外显子,长度为2 580 bp,编码725氨基酸;MCCC2定位5q12-q13.1,含17个外显子,长度为2 304 bp,编码563氨基酸。目前已报道MCCC1和MCCC2基因突变各60余种,c.1155A&C(p.R385S)为热点突变[]。亚太地区国家热点突变有别于欧美国家,存在种族差异。韩国报道c.838G&T(p.D280Y)为其热点突变[,]。我们对29例患儿基因突变分析显示MCCC1突变多见(占86%),c.ins1680A为热点突变(占40%),此突变位点后第9个氨基酸提前出现TAA终止密码子而造成蛋白结构改变;MCCC2突变较少见,本组仅2例检出2种已报道的MCCC2突变[,]。本研究发现的9种基因新突变均已排除多态性可能,经多种方法验证及蛋白结构及功能预测分析显示,5种错义突变均发生在蛋白质活性部位,突变后氨基酸改变导致蛋白侧链结构改变,产生了新的氢键或原有氢键消失,氨基酸残基大小及电性发生改变,使蛋白核心区域结构改变而影响了MCC功能;其他3种缺失突变及1个剪切突变因氨基酸编码子或序列改变而影响蛋白功能;因此,推测9种新突变具有致病性,仍需进一步通过体外蛋白功能表达研究证实。总之,对于新生儿MS/MS筛查发现血C5-OH增高患儿,需结合尿有机酸代谢产物分析、母亲MS/MS分析以进行临床MCCD的诊断。基因突变分析可常规开展,尤其对临床疑似MCCD患儿,通过MCC基因突变分析以从分子生物学水平证实或排除临床诊断。对所有无症状的MCCD患儿均需长期随访以累积更多资料进行预后评估。参考文献[1]StadlerSC, PolanetzR, MaierEM, et al. Newborn Screening for 3-Methylcrotonyl-CoA Carboxylase Deficiency:Population heterogeneity of MCCA and MCCB mutations and impact on risk assessment[J]. Hum Mutat, 2006, 27:748-759.[2]BaumgartnerMR, AlmashanuS, SuormalaTC, et al. The molecular basis of human 3-methylcrotonyl-CoA carboxylase deficiency[J]. J Clin Invest, 2001, 107:495-504.[3]FrazierDM, MillingtonDS, McCandlessSE, et al. The tandem mass spectrometry newborn screening experience in North Carolina:[J]. J Inherit Metab Dis, 2006, 29:76-85.[4]宫丽霏, 叶军, 韩连书, 等. 母源性3-甲基巴豆酰辅酶A羧化酶缺乏症临床及基因突变分析[J]. 中华医学遗传学杂志, 2013, 30:574-578.[5]EichhorstJ, AlcornJ, LepageJ, et al. Elevated neonatal 3-OH isovalerylcarnitine due to breast milk sources in maternal 3-MCC deficiency[J]. Mol Genet Metab, 2010, 101:84-86.[6]WolfeLA, FinegoldDN, VockleyJet al. Potential misdiagnosis of 3-methylcrotonyl-coenzyme A carboxylase deficiency associated with absent or trace urinary 3-methylcrotonylglycine[J].Pediatrics, 2007, 120:e1335-1340.[7]HolzingerA, R?schingerW, LaglerF, et al. Cloning of the human MCCA and MCCB genes and mutations therein reveal the molecular cause of 3-methylcrotonyl-CoA:carboxylase deficiency[J]. Hum Mol Genet, 2001, 10:1299-1306.[8]张星星, 毛定安, 罗小平, 等. 单纯型3-甲基巴豆酰辅酶A羧化酶缺乏症2例并文献复习[J].中国实用儿科杂志, 2005, 20:507-508.[9]DantasMF, SuormalaT, RandolphA, et al. 3-Methylcrotonyl-CoA carboxylase deficiency:mutation analysis in 28 probands, 9 symptomatic and 19 detected by newborn screening[J]. Human Mutat, 2005, 26:164.[10]KoeberlDD, MillingtonDS, SmithWE, et al. Evaluation of 3-methylcrotonyl-CoA carboxylase deficiency detected by tandem mass spectrometry newborn screening[J]. Inherit Metab Dis, 2003, 26:25-35.[11]ZschockeJ, HoffmannGF. Vademecum Metabolicum:Diagnosis and Treatment of Inborn Errors of Metabolism[M]. 3nd ed. Gemany:Milupa Metabolics GmbH and Co. KG, 2011:63–65.[12]JungCW, LeeBH, KimJH, et al. Uneventful clinical courses of Korean patients with methylcrotonylglycinuria and their common mutations[J]. J Hum Genet, 2012, 57:62-64.[13]GrünertSC, StuckiM, MorscherRJ, et al.3-Methylcrotonyl-CoA Carboxylase Deficiency:Clinical, biochemical, enzymatic and molecular studies in 88 individuals[J]. Orphanet J Rare Dis, 2012, 7:31.[14]ArnoldGL, KoeberlDD, MaternD, et al. A Delphi-based consensus clinical practice protocol for the diagnosis and management of 3-methylcrotonyl CoA carboxylase deficiency[J]. Mol Genet Metab, 2008, 93:363-370.[15]MorscherRJ, GrünertSC, BürerC, et al. A single mutation in MCCC1 or MCCC2 as a potential cause of positive screening for 3-methylcrotonyl -CoA carboxylase deficiency[J]. Mol Genet Metab, 2012, 105:602-606.[16]NguyenKV, NaviauxRK, PatraS, et al. Novel mutations in the human MCCA and MCCB gene causing methylcrotonylglycinuria[J]. Mol Genet Metab, 2011, 102:218-221.[17]ChoSY, ParkHD, LeeYW, et al. Mutational spectrum in eight Korean patients with 3-methylcrotonyl-CoA carboxylase deficiency[J]. Clin Genet, 2012, 81:96-98.[18]UematsuM, SakamotoO, SugawaraN, et al. Novel mutations in five Japanese patients with 3-methylcrotonyl-CoA carboxylase deficiency[J]. J Hum Genet, 2007, 52:1040-1043.
200092 上海交通大学医学院附属新华医院 上海市儿科医学研究所内分泌遗传代谢病室
200092 上海交通大学医学院附属新华医院 上海市儿科医学研究所内分泌遗传代谢病室
200092 上海交通大学医学院附属新华医院 上海市儿科医学研究所内分泌遗传代谢病室
200092 上海交通大学医学院附属新华医院 上海市儿科医学研究所内分泌遗传代谢病室
200092 上海交通大学医学院附属新华医院 上海市儿科医学研究所内分泌遗传代谢病室
200092 上海交通大学医学院附属新华医院 上海市儿科医学研究所内分泌遗传代谢病室
200092 上海交通大学医学院附属新华医院 上海市儿科医学研究所内分泌遗传代谢病室
200092 上海交通大学医学院附属新华医院 上海市儿科医学研究所内分泌遗传代谢病室
200092 上海交通大学医学院附属新华医院 上海市儿科医学研究所内分泌遗传代谢病室
基因;突变;串联质谱法;新生儿筛查
"十二五"国家科技支撑计划项目
(2012BAI09B00)
上海市科委重大课题
(11dz1950300)
出版日期:
收稿日期:
Follow up and gene mutation analysis in cases suspected as 3-methylcrotonyl-coenzyme A carboxylase deficiency by neonatal screening
Ye&Jun,Gong&Lifei,Han&Lianshu,Qiu&Wenjuan,Zhang&Huiwen,Gao&Xiaolan,Jin&Jing,Xu&Hao,Gu&Xuefan
Corresponding author: Gu&Xuefan,
DOI: 10.3760/cma.j.issn.14.06.003
Cite as Chin J Pediatr, ): 409-414.
Objective3-Methylcrotonyl-coenzyme A carboxylase deficiency (MCCD) is an autosomal recessive inborn error of leucine catabolism. The cases suspected as MCCD detected by neonatal screening are not rare. The aim of the study was to investigate the clinical outcomes in cases suspected as MCCD by neonatal screening. The second aim was to investigate the mutation spectrum of MCC gene in Chinese population and hotspot mutation.MethodForty-two cases (male 33, female 9), who had higher blood 3-hydroxy-isovalerylcarnitine (C5-OH) levels(cut-off &0.6 μmol/L) detected by neonatal screening using MS/MS, were recruited to this study during Sept.2011 to Mar.2013. The C5-OH concentrations were [0.84(0.61-20.15) μmol/L] in 42 cases at the screening recall. Five cases were firstly diagnosed as maternal MCCD, 6 cases as benign MCCD and 31 cases were suspected as MCCD. To follow up the height, weight, mental development, blood C5-OH concentrations and urinary 3-methylcrotonyl-glycine (3-MCG) and 3-hydroxy isovalerate (3-HIVA) in order to investigate the clinical outcome. The MCCC1 and MCCC2 gene mutation were analyzed for some cases. The novel gene variants were evaluated, and the influence of novel missense variants on the protein structure and function were predicted by PolyPhen-2, SIFT, UniProt and PDB software.Result(1) Forty-two cases had no symptoms, their physical and mental development were normal in the last visit at the median ages of 29 months, the oldest age of follow up was nearly 9 years. (2) Gene mutation analysis was performed for 29 cases with informed consent signed by parents. Fourteen different mutations were identified in 19 cases. The mutations in MCCC1 gene accounted for 86%, the most common mutation was c.ins1680A,(accounted for 40%). Nine kinds of novel variant were detected including 211AG&CC/p.Q74P, c.295G&A/p.G99S, c.764A&C/p.H255P, c.964G&A/p.E322K, c.1331G&A/p.R444H, c.1124delT, c.39_58del20, c.1518delG, c.639+2T&A. Other 3 kinds of mutation in MCCC1 gene and 2 kinds of mutation in MCCC2 gene have been the amino acid of mutant positions of five kinds of novel missense variant are almost highly conserved. These missense variants were predicted to cause change of human MCC protein side chain structure by changing hydrogen bonding, size of amino acid residue and electric charge, and predicted to damage the protein function possibly according to PolyPhen-2 and PDB analysis. So these novel variants may be disease-causing mutations. No mutation were detected in 10 cases.(3) Blood concentrations of C5-OH when screening, recall and end of follow-up in maternal MCCD was 3.50 (1.63-11.43), 1.84 (1.00-9.30), 0.27 (0.26-5.81) μmol/L. There was a significant downward trend. In contrast, benign MCCD group was 8.20(3.60-9.60), 9.67(3.88-20.15), 23.0(5.87-49.10) μmol/L. It showed a rising trend. Children′s urinary 3-MCG of benign MCCD group was found abnormally elevated in 4 cases (100%) when they were recalled.ConclusionA certain number of cases with MCCD or suspected as MCCD in this study had no symptoms and normal physical and mental development after follow-up to oldest age of nearly 9 years. The mutation in MCCC1 gene is common, nine novel mutations were found, c.ins1680A may be a hotspot mutation in Chinese population. The urinary GC/MS analysis and blood MS/MS analysis for mother should be routinely performed for all cases with high blood C5-OH level detected by neonatal screening.
Key words&G M Tand Neonatal Screening
Contributor Information
Department of Pediatric Endocrinologic, Genetic and Metabolic Diseases, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
Gong&Lifei
Han&Lianshu
Qiu&Wenjuan
Zhang&Huiwen
Gao&Xiaolan
共有0条评论
发表你的评论
串联质谱法
新生儿筛查

我要回帖

更多关于 串联质谱筛查 的文章

 

随机推荐