中药主要含有砷砷及其化合物中毒的矿物药

百度文库-信息提示
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
对不起,该文档已被删除,无法查看
4秒后,自动返回首页作者:&作者本人请参看导师姓名:&学位授予单位:&授予学位:硕士学位年度:2012专业:&关键词:&&&&&摘要:(摘要内容经过系统自动伪原创处理以避免复制,下载原文正常,内容请直接查看目录。)最近几年来,雄黄和雌黄在医治恶性血液疾病范畴获得了使人注视的成就,但仍存在诸多运用成绩,如剂型单调、生物应用度低、生物体内追踪检测艰苦等。纳米技巧的鼓起,为开辟适用新型雄黄和雌黄剂型供给了实际根据和技巧基本。近期研讨发明纳米级雄黄和纳米级雌黄,更轻易被癌细胞摄取,对癌细胞的细胞毒性加强并和砒霜相当,当粒径小于必定标准时,受激后发射出强荧光。这些发明将为展开雄黄和雌黄的基本实际研讨供给新思绪新办法,弥补了此项范畴的空白;同时为纳米雄黄和纳米雌黄的现实运用供给实际数据和支撑。本论文选择低毒性乙醇胺作为合营剂,采取配位分解胜利分解出粒径散布平均的纳米雄黄和纳米雌黄。试验中发明酸在纳米雄黄分解进程中施展了主要的感化,选择甲酸、乙酸、柠檬酸、草酸和无机酸分离分解获得纳米雄黄系统。应用HRTEM、UV-Vis和PL等仪器,对分歧分解系统的纳米雄黄停止了重要物化和光学机能剖析,成果注解,采取甲酸、乙酸、柠檬酸分解的纳米雄黄粒径小、散布窄、发光机能优良;而采取无机酸、草酸分解的纳米雄黄粒径较年夜、散布变宽。本试验关于柠檬酸分解系统睁开了较为深刻地研讨,对重要分解工艺参数停止优化,肯定最好反响温度约为80℃,调剂酸参加次序、明白酸参加量即反响系统的pH值等。本试验还制备出自组装雄黄和雌黄纳米构造,如纳米薄壁空心球,采取SEM和XRD对这些自组装纳米停止初步剖析。对上述试验景象和成果的剖析,我们推想纳米雄黄的分解机理:年夜标准雄黄粒子与乙醇胺产生合营反响(As-N键)从而消融,终究构成雄黄份子簇溶液,该份子簇作为反响基元;酸的引入将损坏As-N键,促使雄黄内核部门袒露,在加热进程中袒露晶核互相碰撞,产生发展,终究到达量子点的标准规模,从而发光;同时,核外醇胺掩护层一方面克制内核的无穷发展,另外一方面促使纳米雄黄粒子稳固疏散在反响溶液系统。Abstract:In recent years, realgar and orpiment in the treatment of malignant hematological disease category makes people look at the achievements have been made, but there are still many problems in use, such as monotone dosage forms and biological applications of low, in vivo tracking detection of hard. Nano technique for the development of suitable model muster, realgar and orpiment provide the theoretical basis and forms of basic skills. Recent study found that nano realgar and nanoscale orpiment, more easily be uptaken by cancer cells, cytotoxicity to cancer cells to strengthen and arsenic, when the particle size is smaller than the standard must be stimulated after emit strong fluorescence. These inventions will expand basic theory research provides new thoughts and new measures to realgar and orpiment, fill the bl at the same time as the reality of Realgar and orpiment nanoparticles using actual supply data and support. This paper choose low toxicity of ethanol amine as a joint agent, take the coordination decomposition victory decomposition of the particle size distribution with an average of nano realgar and orpiment nanoparticles. Test method acid decomposition in realgar nanoparticles in the process of display the important role, formic acid, acetic acid, citric acid, oxalic acid and inorganic acid separation decomposition of realgar nanoparticle system. Of HRTEM, UV Vis and PL instrument, to different decomposition system of realgar nanoparticle stop the important physicochemical and optical performance analysis and annotation results, take excellent nano realgar decomposition of formic acid, acetic acid, citric acid, small particle size, scattered short, lig and the use of inorganic acid, oxalate decomposition of realgar nanometer particle size is big, spread wider. The experiment on citric acid decomposition system open the more profound research, the important decomposition process parameters optimization, and certainly the best reaction temperature is about 80 DEG C, adjust acid in order, understand acid in quantity that reaction system pH value. The experiment of preparation from the assembly of Realgar and orpiment nano structure, such as thin-walled hollow nanospheres, adopt SEM and XRD of these self assembling nano carries on the preliminary analysis. The experimental phenomena and results analysis, we suppose that realgar nanoparticles decomposition mechanism: Nianye standard realgar particles and ethanolamine produce joint response (As-N key) and ablation, eventually forming a realgar member cluster solution, the member of the cluster
acid introduced keys will be damaged As-N, prompting realgar kernel Department bare, in the heating process of bare nuclei collide with each other, emergence and development, eventually reach the quantum dots of the standard scale, at the same time, the outer nuclear alkanolamine cover layer on the one hand, the restraint of the kernel of infinite development, on the other hand make nano meter realgar particle stability evacuation in the reaction solution system.目录:摘要4-5Abstract5第1章 绪论8-21&&&&1.1 课题来源和目的意义8-10&&&&1.2 纳米技术在生物医药领域的应用10-13&&&&&&&&1.2.1 纳米材料的特性10-11&&&&&&&&1.2.2 纳米药物11-13&&&&1.3 纳米雄黄、雌黄的的制备方法13-17&&&&&&&&1.3.1 纳米雄黄的制备方法13-16&&&&&&&&1.3.2 纳米雌黄的制备方法16-17&&&&1.4 纳米雄黄特殊的光学性能及其应用17-19&&&&1.5 自组装的原理和方法19-20&&&&1.6 课题研究的背景和主要内容20-21第2章 实验材料及研究方法21-25&&&&2.1 实验药品及仪器21-22&&&&&&&&2.1.1 实验药品21-22&&&&&&&&2.1.2 实验主要仪器22&&&&2.2 实验方法22-25&&&&&&&&2.2.1 纳米雄黄的合成方法22-23&&&&&&&&2.2.2 纳米雌黄的合成方法23&&&&&&&&2.2.3 分析测试方法23-25第3章 合成条件的探索和优化25-32&&&&3.1 选择配合剂和溶剂25-27&&&&3.2 合成温度对乙醇胺-纳米雄黄体系的影响27-28&&&&3.3 反应时间对乙醇胺-纳米雄黄体系的影响28-29&&&&3.4 pH 对乙醇胺-纳米雄黄体系的影响29-31&&&&3.5 本章小结31-32第4章 酸对纳米雄黄和纳米雌黄合成的影响32-55&&&&4.1 甲酸纳米雄黄体系分析32-35&&&&&&&&4.1.1 反应温度对甲酸-乙醇胺-纳米雄黄体系的影响32-33&&&&&&&&4.1.2 加酸顺序对甲酸-乙醇胺-纳米雄黄体系的影响33-34&&&&&&&&4.1.3 反应时间对甲酸-乙醇胺-纳米雄黄体系的影响34-35&&&&4.2 无机酸-乙醇胺-纳米雄黄体系35-37&&&&&&&&4.2.1 浓盐酸-乙醇胺-纳米雄黄体系35-36&&&&&&&&4.2.2 浓硫酸-乙醇胺-纳米雄黄体系分析36-37&&&&4.3 乙酸-乙醇胺-纳米雄黄体系分析37-39&&&&&&&&4.3.1 不同体积乙酸对乙醇胺纳米雄黄体系的影响37-38&&&&&&&&4.3.2 反应时间对乙酸-乙醇胺-纳米雄黄体系的影响38&&&&&&&&4.3.3 乙酸-乙醇胺-纳米雄黄体系的自组装38-39&&&&4.4 草酸-乙醇胺-纳米雄黄体系39-40&&&&4.5 柠檬酸-乙醇胺-纳米雄黄体系40-49&&&&&&&&4.5.1 柠檬酸-乙醇胺-纳米雄黄的实验方法41-42&&&&&&&&4.5.2 反应时间对柠檬酸-乙醇胺-纳米雄黄体系的影响42-43&&&&&&&&4.5.3 柠檬酸量对柠檬酸-乙醇胺-纳米雄黄体系的影响43-45&&&&&&&&4.5.4 PEG 修饰柠檬酸-乙醇胺-纳米雄黄粒子45-46&&&&&&&&4.5.5 柠檬酸-乙醇胺-纳米雄黄体系自组装46-49&&&&4.6 纳米雌黄的研究49-53&&&&4.7 本章小结53-55第5章 纳米雄黄和纳米雌黄机理研究55-59结论59-60参考文献60-66致谢66分享到:相关文献|

我要回帖

更多关于 含砷矿物 的文章

 

随机推荐