蛋白质的糖基化对蛋白质的理化性质有哪些食物含蛋白质影响?

生物质谱技术在蛋白质组学中的应用有哪些? - 已解决 - 搜狗问问
生物质谱技术在蛋白质组学中的应用有哪些?
楼主你好:生物质谱技术在蛋白质组学中的应用一、&前言基因工程已令人难以置信的扩展了我们关于有机体DNA序列的认识。但是仍有许多新识别的基因的功能还不知道,也不知道基因产物是如何相互作用从而产生活的有机体的。功能基因组试图通过大规模实验方法来回答这些问题。但由于仅从DNA序列尚不能回答某基因的表达时间、表达量、蛋白质翻译后加工和修饰的情况、以及它们的亚细胞分布等等,因此在整体水平上研究蛋白质表达及其功能变得日益显得重要。这些在基因组中不能解决的问题可望在蛋白质组研究中找到答案。蛋白质组研究的数据与基因组数据的整合,将会在后基因组研究中发挥重要作用。目前蛋白质组研究采用的主要技术是双向凝胶电泳和质谱方法。双向凝胶电泳的基本原理是蛋白质首先根据其等电点,第一向在pH梯度胶内等电聚焦,然后转90度按他们的分子量大小进行第二向的SDS-PAGE分离。质谱在90年代得到了长足的发展,生物质谱当上了主角,蛋白质组学又为生物质谱提供了一个大舞台。他们中首选的是MALDI-TOF,其分析容量大,单电荷为主的测定分子量高达30万,干扰因素少,适合蛋白质组的大规模分析。其次ESI为主的LC-MS联机适于精细的研究。本文将简介几种常用的生物质谱技术,并着重介绍生物质谱技术在蛋白质组学各领域的应用。二、&生物质谱技术1.电喷雾质谱技术(ESI)电喷雾质谱技术(&Electrospray&Ionization&Mass&Spectrometry&,&ESI&-&MS)&是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相。电喷雾离子化的特点是产生高电荷离子而不是碎片离子,&使质量电荷比(m/&z)&降低到多数质量分析仪器都可以检测的范围,因而大大扩展了分子量的分析范围,离子的真实分子质量也可以根据质荷比及电荷数算出。2.基质辅助激光解吸附质谱技术(MOLDI)基质辅助激光解析电离(MOLDI)是由德国科学家Karas和Hillenkamp发现的。将微量蛋白质与过量的小分子基体的混合液体点到样品靶上,经加热或风吹烘干形成共结晶,放入离子源内。当激光照射到靶点上时,基体吸收了激光的能力跃迁到激发态,导致蛋白质电离和汽化,电离的结果通常是基体的质子转移到蛋白质上。然后由高电压将电离的蛋白质从离子源转送到质量分析器内,再经离子检测器和数据处理得到质谱图。TOF质量分析器被认为是与MALDI的最佳搭配,因为二者都是脉冲工作方式,在质量分析过程中离子损失很少,可以获得很高的灵敏度。TOF质量分析器结果简单,容易换算,蛋白质离子在飞行管内的飞行速度仅与他的(m/z)-1/2成正比,因此容易通过计算蛋白质离子在飞行管内的飞行时间推算出蛋白质离子的m/z值。与传统质量分析器相比,更易得到高分辨率和高测量精度;速度快,离子飞行时间仅为几个μs和约100μs之间;质量范围宽,可以直接检测到几十万道尔顿的单电荷离子。飞行时间质量分析器被认为是21世纪最有应用前景的质量分析器。3.傅立叶变换-离子回旋共振质谱(FT-ICR&MS)傅立叶变换-离子回旋共振质谱法(FT-ICR&MS)是离子回旋共振波谱法与现代计算机技术相结合的产物。傅立叶变换-离子回旋共振质谱法是基于离子在均匀磁场中的回旋运动,&离子的回旋频率、半径、速度和能量是离子质量和离子电荷及磁场强度的函数,&当对离子施加与其回旋频率相同的射频场作用时,&离子将同相位加速到一较大的半径回旋,&从而产生可被接受的类似电流的信号。傅立叶变换-离子回旋共振质谱法所采用的射频范围覆盖了欲测定的质量范围,所有离子同时被激发,&所检测的信号经过傅立叶变换,&转换为质谱图。其主要优点有:容易获得高分辨;便于实现串极质谱分析;便于使用外电离源并与色谱仪器联用。此外,他还有灵敏度高,质量范围宽,速度快,性能可靠等优点。4.快原子轰击质谱技术(FABMS)快原子轰击质谱技术(&Fast&Atom&Bomebardment&Mass&Spectrometry&,&FABMS)&是一种软电离技术,是用快速惰性原子射击存在于底物中的样品,使样品离子溅出进入分析器,这种软电离技术适于极性强、热不稳定的化合物的分析,特别适用于多肽和蛋白质等的分析研究。FABMS能提供有关离子的精确质量,从而可以确定样品的元素组成和分子式。而FABMS&-MS&串联技术的应用可以提供样品较为详细的分子结构信息,从而使其在生物医学分析中迅速发展起来。三、蛋白质的分析鉴定随着质谱技术的发展,分子量的测定已从传统的有机小分子扩展到了生物大分子。MALDI-MS技术以其极高的灵敏度、精确度在蛋白质分析中得到了广泛的应用。该技术不仅可测定各种疏水性、亲水性和糖蛋白的分子量,还可直接测定蛋白质混合物的分子量。这可认为是蛋白质分析领域的一项重大突破。蛋白质组的研究是从整体水平上研究细胞或有机体内蛋白质的组成及其活动规律。质谱技术作为蛋白质组研究的三大支撑技术之一,除了用于多肽,蛋白质的分子量测定外,还广泛的应用于肽指纹图谱测定及氨基酸序列测定。肽指纹图谱(Peptide&Mass&Fingerprinting,&PMF)测定是对蛋白酶解或降解后所得多肽混合物进行质谱分析的方法。质谱分析所得肽断与多肽蛋白数据库中蛋白质的理论肽断进行比较,判断出所测蛋白是已知还是未知。由于不同的蛋白质具有不同的氨基酸序列,不同蛋白质所得肽断具有指纹特征。采用肽指纹谱的方法已对酵母、大肠杆菌、人心肌等多种蛋白质组进行了研究。对肽序列的测定往往要应用串连质谱技术,采用不同的技术选择特定质核比的离子,并对其进行碰撞诱导解离,通过分析肽段的断裂情况推导出肽序列。四、后转录修饰的蛋白质的检测和识别在蛋白质组的研究中,蛋白质和多肽的序列分析已不局限于阐明蛋白质的一级结构,对翻译后的修饰的进一步分析也是蛋白质化学的一项重要任务。这种修饰对于蛋白质的功能非常重要,如:细胞识别中的蛋白质相互作用,信号传导和蛋白质定位。1. 蛋白质的糖基化[11, 12]糖蛋白在细胞内部,细胞膜和细胞外均有发现,实际上大部分蛋白质是糖蛋白。对糖蛋白的检测和分析发现,糖蛋白中糖组分的结构和功能具有多样性。糖蛋白中的糖通常是不同种类的,而且是由一些可控数量的单糖组成。糖基化的多样性与细胞周期,细胞分化和发展的状态有关。在蛋白组时代中,蛋白质的修饰会引起其理化性质的改变,因此是不容忽视的。从1D或2D凝胶得到的糖基化蛋白的识别,一般是进行MALDI-MS指纹分析, 或是对MALDI-PAD或ESI-MS/MS得到的碎片谱进行分析。对完整的糖蛋白的研究是非常困难的,所有已知的离子化技术都有其局限性。目前,人们主要研究糖肽,其好处之一就是质量减小了,这就会得到更好的分辨率,而且糖肽仍保留了糖基化位点。将分离的糖蛋白用不同的蛋白酶消化后就可进行糖肽的研究。一旦糖肽被识别出,就可以用串连质谱(ESI-MS/MS)来阐明肽序列。当蛋白的序列已知时,计算质量差就可推出其上附着的寡糖的质量。要将糖部分从糖蛋白中释放出来,可用化学切割或酶切割(流程图见图1)。目前,连有结构专一性糖苷酶的质谱在提供序列,分支和链接数据方面是最有力的技术。对于N糖基化常用的糖苷内切酶有PNGase-F, PNGase-A, EndoF和EndoH。化学切割也可以用来释放O-连接和N-连接的多糖,但经常出现的缺点是他会完全破坏所有的肽键,因而丢失了关于糖附着位点的信息。而且这些切割不能从糖肽中连续释放单糖。用肼的化学切割可以除去两种类型的糖基化。在60℃可专一性的释放O-连接的糖,而在95℃能释放N-连接的糖。释放O-原子更常用的方法是用碱进行β消除。通常,糖基中加入金属离子在MALDI和ESI中离子化。用MALDI-MS分析糖类的一个好的选择是将之与其他一些化合物混合,这样可以进一步提高灵敏度和分辨率。不同的质谱方法可以产生多糖的源后裂解(PSD)和碰撞诱导解离 (CID)谱,这可以给出有关糖的序列,分支及糖间的连接等信息。更多质量检测、分析测试、化学计量、标准物质、(化学对照品相关技术资料请参考国家标准物质,药品对照品天然产物标准品 2.&蛋白质的磷酸化蛋白质中氨基酸的磷酸化在生命系统中起重要的作用。磷酸化经常作为分子开关控制不同过程蛋白质的活性,如新陈代谢,信号传导,细胞分裂等过程。因此,蛋白质中磷酰氨基酸的识别在蛋白质分析中是一项重要的工作。已知的磷酰氨基酸的类型有四种:1.O-磷酸盐,通过羟氨酸的磷酸化形成的,如丝氨酸,苏氨酸,酪氨酸。2.N-磷酸盐,通过精氨酸,赖氨酸或组氨酸中的氨基的磷酸化形成的。3.乙酰磷酸盐,通过天冬氨酸或谷氨酸的磷酸化形成的。4.S-磷酸酯,通过半胱氨酸的磷酸化形成的。用质谱分析磷酸化时主要存在的问题是,混合物中磷酸化肽的信号被抑制。因此只有当一些非磷酸化肽的含量降低(或磷酸化的肽被富集)后,&分析磷酸化的肽才会变得容易些。一些相应的用于质谱分析的前磷酸化肽或磷酸化蛋白质的分离和富集方法和技术已有所发展,现已建立的分离技术有:双向磷酸多肽谱图(2D-PP),高分辨率的凝胶电泳(2DE)和反相高效液相色谱(RP-HPLC)。对于32P标记的磷酸化肽或蛋白可用放射自显影或磷储屏检测,提取后可以高灵敏度MALDI-MS分析;如果32P标记不可行,就要用LC-MS/MS分析,常用HPLC与质谱联用。常用的富集方法有:固定金属亲和色谱(IMAC),IMAC是选择性分离和富集磷酸化肽最广泛的方法。此方法中,&键合在螯合底物上的金属离子(通常是Fe3+或Ga3+)选择性地与磷酸化肽中的磷酸部分相结合,&并且在高pH&或磷酸缓冲液中磷酸化肽可以释放出来。抗体免疫沉淀,高亲和性抗体可以从复杂混合物中免疫沉淀特定的蛋白。目前利用抗体富集蛋白/肽仅局限于分析磷酸化酪氨酸,&然后用MALDI-TOF&MS分析与抗体相联接的磷酸化肽。尽管用于免疫沉淀的抗体对其底物必须有相对高的亲和力,&但低亲和力抗体仍然可以有效地用于免疫印迹Western-blotting分析。化学修饰,已建立了两种从复杂混合物中专一分离磷酸化蛋白/肽的方法[15,16]。但两种方法都有待进一步优化以鉴定低丰度蛋白质。磷酸化肽的检测和磷酸化位点的确定主要有以下MS技术:MALDI-TOF&MS&可以通过肽指纹谱(PMF)鉴定蛋白质,与磷酸酯酶处理相结合可以确定磷酸化位点。其原理是磷酸酯酶处理后,磷酸化的肽丢失磷酸基团而产生特定质量数的变化,MALDI-TOF&MS通过检测这种质量数的变化而确定磷酸化位点。串联质谱(MS/MS)&可进行前体离子扫描,这一方法是通过检测磷酸基团产生的特定片段来报告磷酸肽的存在。磷酸化肽经CID后会产生磷酸基团的特异性片段,这些特异性的片段在用串联质谱进行前体离子扫描时可作为磷酸肽的“报告离子”。串联质谱还可进行中性丢失扫描,这种方法是用MS/MS检测经CID后发生中性丢失H3PO4&(98&u)的肽段。另外,由于液相色谱分离肽降低了离子抑制效应,也有人用LC-MS/MS分析磷酸化位点。傅立叶变换质谱进行电子捕获解离&电子捕获解离(ECD)与傅立叶变换离子回旋加速共振(FTICR)质谱相连是蛋白质、肽测序和研究蛋白质翻译后修饰的一个有力方法。近来,它已被成功地用于鉴定肽片段上发生磷酸化的残基。五、&小结目前,生物质谱被认为是大规模、高通量进行蛋白结构鉴定的首选工具,但与之结合的2-D电泳仍有缺点,如工作量大,重现性差。因此,将对其进行改进,如分子扫描技术等。由于通过LC-MS/MS可直接鉴定蛋白混合物,因此将来有望不通过2-D&就能研究蛋白质组。当然,这还需要解决一些技术问题,其中最根本的是质谱的定量问题。生物质谱的魅力在于它能帮助我们研究蛋白-&蛋白间相互作用、翻译后修饰乃至基因表达水平的变化等。相信,随着生物质谱技术和数据采集软件技术的不断飞速发展,我们将能够获得这方面的更多信息,从而揭示出生命活的奥秘。什么是蛋白质糖基化
什么是蛋白质糖基化
最好全面些 教科书中找不到明确的定义和功能 谢谢
合成部位粗面内质网
主要在高尔基体
合成方式
来自同一个寡糖前体
一个个单糖加上去
与之结合的氨基酸残基
丝氨酸、苏氨酸、羟脯、羟赖
最终长度
至少5个糖残基
1-4个糖残基
第一个糖残基
N-乙酰葡萄糖胺
N-乙酰半乳糖胺
大概清楚了吧! 蛋白质糖基化是一种蛋白质修饰,作用嘛。可能有两点:1为蛋白质打上标志,便于转移。
2影响多肽的构象,增强蛋白质的稳定性(或者其他作用)。
一般是这样的:N连接糖基化发生在糙面内质网中; O连接糖基化发生在高尔基体中。 当然,细胞质基质中的糖基化也有,如哺乳动物细胞中把N-乙酰葡糖胺分子加到蛋白质丝氨酸残基的羟基上。
进化上的意义:寡糖链具有一定的刚性,从而限制了其它大分子接近细胞表面的膜蛋白,这就可能使真核细胞的祖先具有一个保护性的外被(像一个软甲)同时又不象 细胞壁 那样限制细胞的形状与运动。
的感言:细胞生物学很多问题都没一个标准,此回答不错 参考了
其他回答 (1)
糖以糖苷的形式加到蛋白质上
等待您来回答
理工学科领域专家当前位置:
>>>下列说法正确的是[]A.食醋、葡萄糖、淀粉、蛋白质都是基本营养物..
下列说法正确的是
A.食醋、葡萄糖、淀粉、蛋白质都是基本营养物质B.乙烯、苯、甲烷都是来自石油和煤的基本化工原料 C.乙醇、乙酸都可以看成是乙烷分子中的氢原子被羟基或羧基取代后的产物D.除去乙酸乙酯中的少量乙酸用饱和碳酸钠溶液洗涤、分液、干燥、蒸馏
题型:单选题难度:偏易来源:专项题
马上分享给同学
据魔方格专家权威分析,试题“下列说法正确的是[]A.食醋、葡萄糖、淀粉、蛋白质都是基本营养物..”主要考查你对&&蛋白质,甲烷,乙烯,苯,乙醇,乙酸&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
蛋白质甲烷乙烯苯乙醇乙酸
相对分子质量在10000以上的,并具有一定空间结构的多肽,称为蛋白质。组成:蛋白质是南C、H、O、N、S等元素组成的结构复杂的化合物。蛋白质的性质:(1)两性由于形成蛋白质的多肽是由多个氨基酸分子脱水形成的,在多肽链的两端必有一NH2和一COOH,因此蛋白质既能与酸反应,又能与碱反应,表现为两性。 (2)水解反应蛋白质在酸、碱或酶的作用下,水解生成相对分子质量较小的肽类化合物,最终逐步水解得到各种氨基酸。 (3)盐析向蛋白质溶液巾加入某些无机盐(如硫酸铵、硫酸钠和氯化钠等)达到一定浓度时,会使蛋白质的溶解度降低而从溶液中析出,这种作用称为盐析。注意:盐析只改变蛋白质的溶解度,没有改变它的化学性质,析出的蛋白质还能溶于水,故盐析是可逆的过程。 (4)变性在某些物理因素(如加热、加压、搅拌、紫外线照射和超声波等)或化学因素(如强酸、强碱、重金属盐、三氯乙酸、甲醛、乙醇和丙酮等)的影响下,蛋白质的理化性质和生理功能发生改变的现象,称为蛋白质的变性。注意:蛋白质的变性是一个不可逆过程,变性后的蛋白质在水中不能重新溶解,同时也会失去原有的生理活性。 (5)蛋白质的颜色反应蛋白质可以与许多试剂发生颜色反应,如硝酸可以使含有苯环结构的蛋白质变黄,这是含苯环的蛋白质的特征反应,常用来鉴别部分蛋白质。在使用浓硝酸时,不慎将浓硝酸溅在皮肤上而使皮肤发黄,就是蛋白质发生颜色反应的结果。 (6)蛋白质的灼烧蛋白质在灼烧时产生烧焦羽毛的气味,可以据此鉴别真丝和人造丝。能够发生水解反应的物质归纳:
1.盐类水解 (1)强酸弱碱盐水解呈酸性,如CuSO4、NH4NO3、 FeCl3、Al2(SO4)3等。 (2)强碱弱酸盐水解呈碱性,如KF、Na2CO3、 K2SiO3、NaAlO2等。 2.氮化镁的水解 3.碳化钙的水解4.卤代烃的水解卤代烃水解生成醇,如 5.酯的水解 6.糖类水解糖类水解的最终产物是单糖,如 7.蛋白质的水解蛋白质水解的最终产物足多种氨基酸,肽键的断裂如下图所示:甲烷:(1)结构式: 、球棍模型: 、比例模型: 空间构型为正四面体。 (2)物理性质:无色无味的气体,密度0.717g/L,记忆溶于水。 (3)化学性质:通常情况下甲烷比较稳定,与高锰酸钾等强氧化剂不反应,与强酸强碱不反应,可发生氧化反应、取代反应 ①氧化反应:CH4+O2CO2+2H2O ②取代反应:CH4+Cl2CH3Cl+HCl,甲烷在光照条件下反应,现象:试管内气体颜色逐渐变浅,试管壁上有油状液滴,试管中有少量白雾。甲烷中四个氢原子都可以与氯气发生取代,甲烷的4中氯代产物都不溶于水,常温下,一氯甲烷是气体,其他都为液体,三氯甲烷俗称氯仿。 甲烷与氯气等卤素单质反应的注意事项:
1.反应条件为光照,在室温或暗处不发生反应,但不能用强光直接照射,以免引起爆炸。 2.甲烷与溴蒸气、碘蒸气等纯卤素也能发生类似反应,但不能与溴水、碘水发生反应。 3.甲烷与氯气的反应是一种连锁反应,不会停留在某一步,因此产物一般是五种物质的混合物。 4.CH4与Cl2在光照条件反应,生成物中HCl的物质的量最多。 5.1mol有机物CxHy与Cl2发生完全取代反应时,消耗Cl2的物质的量为ymol。
原子共面的判断方法:
判断有机物分子中的原子是否共面,首先要熟悉常见的分子构型。如甲烷分子(CH4)为正四面体结构,其分子中最多有三个原子共面;乙烯分子 (CH2=CH2)中的所有原子共面;苯分子(C6H6)中的所有原子共面。在判断有机物分子中原子共面情况时,把要分析的分子看做是简单的常见分子的衍生物,即复杂问题简单处理 (1)在甲烷分子中,一个碳原子和任意两个氢原子可确定一个平面,即甲烷分子中有且只有三个原子共面。当甲烷分子中的某个氢原子被其他原子或原子团取代时,则代替该氢原子的原子一定在原来的平面上。 (2)乙烯分子中所有原子在同一平面内,键角为 120。。当乙烯分子中的某个氢原子被其他原子或原子团取代时,则代替该氢原子的原子一定在乙烯分子所在的平面内。 (3)苯分子中所有原子在同一个平面内,键角为 120。。当苯分子中的某个氢原子被其他原子或原子团取代时,则代替该氢原子的原子一定在苯分子所在的平面内。说明有机化合物分子中的单键(包括碳碳单键、碳氢单键、碳氧单键等)可以旋转;而双键、三键不能旋转乙烯的结构和性质:
1.分子结构:&2.物理性质:在通常状况下,乙烯是无色、稍有气味的气体,难溶于水,易溶于乙醇、乙醚等有机溶剂,密度(标准状况时为1.25g·L-1)比空气略小,因此实验室制取乙烯不用排空气法收集,而用排水法收集。 3.化学性质:由于碳碳双键中的一个键易断裂,刚此乙烯的性质比较活泼,能发生加成、加聚反应,能使溴水和KMnO4溶液(酸性)褪色。 (1)乙烯易发生氧化反应①乙烯的燃烧乙烯在氧气或空气中易燃烧,完全燃烧生成CO2和H2O,反应的化学方程式为:&乙烯含碳量比较高,在一般情况下燃烧不是很充分,因此火焰明亮且伴有黑烟。 ②乙烯的催化氧化&③乙烯能被酸性KMnO4溶液氧化乙烯使酸性KMnO4溶液褪色的实质是乙烯被酸性KMnO4溶液氧化成二氧化碳和水。 (2)乙烯能发生加成反应有机物分子中不饱和碳原子与其他原子(或原子团) 直接结合生成新的化合物的反应叫做加成反应。乙烯使溴的四氯化碳溶液褪色的实质是乙烯与溴单质发生加成反应生成了1,2一二溴乙烷,反应的化学方程式为: 通常简写为因此,可用溴水或溴的四氯化碳溶液鉴别乙烯和甲烷、乙烷等烷烃,也可用于除去甲烷中混有的乙烯。 (3)加聚反应在一定条件(温度、压强、催化剂)下,乙烯能发生加聚反应:由相对分子质量小的化合物(单体)分子互相结合成相对分子质量很大的高分子的反应叫做聚合反应。由一种或多种不饱和化合物(单体)分子通过不饱和键互相加成而聚合成高分子化合物的反应叫做加成聚合反应,简称加聚反应。乙烯的鉴别和除杂:
1.乙烯和其他物质的鉴别利用被鉴别物质性质的差异进行区分,要求操作简单、安全,现象明显,结论准确,以乙烷与乙烯的鉴别为例。操作:将两种气体分别通人酸性KMnO4溶液中。现象:一种气体使酸性KMnO4溶液褪色,一种气体不能使酸性KMnO4溶液褪色。结论:使酸性KMnO4溶液褪色者为乙烯,不能使酸性KMnO4溶液褪色者为乙烷. 2.除杂质乙烯除杂要求:将杂质除净,不能引入新杂质,小能对主要成分产生不利影响。如乙烷中混有乙烯,除杂的方法是用溴水洗气,乙烯与溴发生加成反应破除去,乙烷不反应逸出。苯的分子结构:
苯的性质:
1.物理性质苯通常是无色、带有特殊气味的液体,有毒,不溶于水,密度比水小,熔点为5.5℃,沸点为80.1℃。若用冰冷却,苯就会凝结成无色的晶体。 2.化学性质由于苯分子中的碳碳键是介于碳碳单键与碳碳双键之间的独特的键,所以它既有饱和烃的性质,又有不饱和烃的一些性质(苯的性质比不饱和烃的性质稳定)。 (1)氧化反应①燃烧:苯易燃烧,所以在苯的生产、运输、贮存和使用过程中要注意防火。苯在空气中燃烧时有明亮火焰斤带有浓烟。因为苯分子含碳量高,没有得到充分燃烧,有碳单质产生,所以燃烧时有浓烟。 ②苯与酸性高锰酸钾溶液不反应向试管中加入2mL苯,然后加入几滴酸性高锰酸钾溶液,振荡后静置,出现分层现象,上层(苯层)为无色,下层(水层)呈紫色。说明苯与酸性高锰酸钾溶液不反应。 (2)取代反应 ①卤代反应装置图如下图所示。操作:把苯和少量液溴放在烧瓶里,同时加入少量铁屑作催化剂。用带导管的瓶塞塞紧瓶口,跟瓶口垂直的一段导管可以起冷凝器的作用。现象:在常温时,很快就会看到在导管口附近出现白雾(由溴遇水蒸气所形成)。反应完毕后,向锥形瓶内的液体里滴入AgNO3溶液,有浅黄色沉淀生成。把烧瓶里的液体倒在盛有冷水的烧杯里,烧杯底部有褐色不溶于水的液体(不溶于水的液体是溴苯,它是密度比水大的无色液体,由于溶解了溴而显示褐色)。 注意a.苯只能与液溴发生取代,不与溴水反应,溴水中的溴只可被苯萃取。b.反应中加入的催化剂是Fe屑,实际起催化作用的是FeBr3c.生成的是无色液体,密度大于水。d.欲得到较纯的溴苯,可用稀NaOH溶液洗涤,以除去Br2。 ②硝化反应硝化反应是指苯分子中的氢原子被一NO2所取代的反应,也属于取代反应的范畴。 注意a.硝酸分子中的“一NO2”原子团叫做硝基,要注意硝基(一NO2)与亚硝酸根离子(NO2-)化学式的区别。b.硝基苯是一种带有苦杏仁味的、无色的油状液体,不溶于水,密度比水大。硝基苯有毒。c.为便于控制温度,采用水浴加热。 (3)加成反应苯分子中的碳碳键不是典型的碳碳双键,不容易发生加成反应(不能使溴的四氯化碳溶液褪色),但在一定条件下可与氢气发生加成反应,生成环己烷,反应的化学方程式为:乙醇分子的组成与结构:
乙醇分子可以看成是乙烷分子中的一个氢原子被羟基(一OH)取代而形成的。乙醇分子的组成与结构见下表:乙醇的性质:
(1)物理性质:俗称酒精,它在常温、常压下是一种易燃、易挥发的无色透明液体,它的水溶液具有特殊的、令人愉快的香味,并略带刺激性。 (2)乙醇的化学性质: ①乙醇可以与金属钠反应,产生氢气,但不如水与金属钠反应剧烈。 2CH3CH2OH+2Na→2CH3CH2ONa+H2↑ 活泼金属(钾、钙、钠、镁、铝)可以将乙醇羟基里的氢取代出来。 ②乙醇的氧化反应: 2CH3CH2OH+O2→2CH3CHO+2H2O(条件是在催化剂Cu或Ag的作用下加热) ③乙醇燃烧:发出淡蓝色火焰,生成二氧化碳和水(蒸气),并放出大量的热,不完全燃烧时还生成一氧化碳,有黄色火焰,放出热量 完全燃烧:C2H5OH+3O22CO2+3H2O& ④乙醇可以和卤化氢发生取代反应,生成卤代烃和水。 C2H5OH+HBr→C2H5Br+H2O 注意:通常用溴化钠和硫酸的混合物与乙醇加热进行该反应。故常有红棕色气体产生。 ⑤乙醇可以在浓硫酸和高温的催化发生脱水反应,随着温度的不同生成物也不同。&& A. 消去(分子内脱水)制乙烯(170℃浓硫酸)&& C2H5OH→CH2=CH2↑+H2O (消去反应) B. 缩合(分子间脱水)制乙醚(140℃ 浓硫酸)& 2C2H5OH→C2H5OC2H5+H2O(取代反应) 有关醇类的反应规律:
1.消去反应的规律总是消去和羟基所在碳原子相邻的碳原子上的氢原子,没有相邻的碳原子(如CH3OH)或相邻的碳原子上没有氢原子()就不能发生消去反应。能发生消去反应的醇的结构特点为: 2.催化氧化反应的规律:与羟基相连的碳原子上若有2个或3个氢原子,羟基则易被氧化为醛;若有1个氢原子,羟基则易被氧化为酮;若没有氢原子,则羟基一般不能被氧化。即&3.酯化反应的规律醇与羧酸或无机含氧酸发生酯化反应,一般规律是“酸去羟基醇去氢”即酸脱去一OH,醇脱去一H。例如:
可用氧的同位素:作为示踪原子来确定反应机理。如:乙醇的工业制法: (1)乙烯水化法: (2)发酵法:乙酸分子的组成与结构:
酸从结构上可以看成是甲基和羧基(-COOH)相连而成的化合物。乙酸的官能团是一COOH。乙酸的性质:
俗称醋酸,具有强烈刺激性气味的无色液体。沸点117.9℃,熔点16.6℃。温度低于熔点时,乙酸凝结成类似冰一样的晶体,纯净的乙酸称为冰醋酸。乙酸溶于水和乙醇。 (1)乙酸的酸性:乙酸的酸性促使它还可以与碳酸钠、氢氧化铜、苯酚钠等物质反应。   2CH3COOH+Na2CO3=2CH3COONa+CO2↑+H2O    2CH3COOH+Cu(OH)2=Cu(CH3COO)2+2H2O    CH3COOH+C6H5ONa=C6H5OH(苯酚)+CH3COONa (2)乙酸与金属反应: 2Na+2CH3COOH→2CH3COONa+H2↑ (3)乙酸的酯化反应: 在浓硫酸作用下乙酸和乙醇反应酯化反应 CH3COOH+CH3CH2OHCH3COOCH2CH3+H2O
发现相似题
与“下列说法正确的是[]A.食醋、葡萄糖、淀粉、蛋白质都是基本营养物..”考查相似的试题有:
95357855397557174123112105103822

我要回帖

更多关于 哪些食物含蛋白质 的文章

 

随机推荐