韧性变形计带

咨询热线:028-
药品资讯网--新药研发行业门户!
您现在的位置:
> 嫩江-八里罕断裂带岭下韧性剪切带变形特征
嫩江-八里罕断裂带岭下韧性剪切带变形特征
发布时间:
【题 名】嫩江-八里罕断裂带岭下韧性剪切带变形特征
【作 者】韩国卿 刘永江 温泉波 邹运鑫 梁道俊 赵英利 李伟 赵立敏
【机 构】吉林大学地球科学学院 长春130061 中国地质大学地质过程与矿产资源国家重点实验室 北京100083 金日成综合大学地质系 朝鲜平壤
【刊 名】《吉林大学学报:地球科学版》2009年 第3期 397-405页 共9页
【关键词】嫩江-八里罕断裂带 岭下地区 韧性剪切带 构造变形 EBSD 左行走滑
【文 摘】嫩江-八里罕断裂带位于东北地区中部、大兴安岭的东缘,为松辽盆地的西缘控盆断裂。断裂带传统认识上被认为是一条NNE向的深大断裂,其性质为正断层或拆离断层。笔者野外地质考察过程中,在断裂带中南段吉林省白城市岭下地区发现韧性剪切带,通过对该韧性剪切带构造要素系统测量和统计、显微构造观察、有限应变测量、石英组构EBSD(电子背散射衍射)分析和古应力值测量,明确了岭下剪切带变形程度为初糜棱岩-糜棱岩、石英组构以低温底面组构为主,滑移系为{0001},变形温度在400℃左右的变形特征,并初步认为嫩江一八里罕断裂带曾经历左旋走滑变形阶段;结合断裂带相关年代学资料,确定走滑时间为早白垩世中期(134~113Ma),其形成机制与西太平洋伊泽纳崎板块向欧亚大陆俯冲的运动与NWW向NNW转向有关。
【下载地址】点此下载
赞助商链接
推荐专业资料
赞助商链接 下载
 收藏
该文档贡献者很忙,什么也没留下。
 下载此文档
正在努力加载中...
新疆冰达坂韧性剪切带构造变形分析
下载积分:
内容提示:新疆冰达坂韧性剪切带构造变形分析,变形,分析,新疆,构造变形,剪切变形,构造 变形,剪 切构造,韧性剪切带变形,达坂韧性剪切带,带 构造,剪切构造,新疆冰达坂,韧性剪切带,构造带,变形缝建筑构造,剪切型变形,变形缝构造,剪切变形的特点,塑性剪切变形,剪切变形 挠度,节点域剪切变形
文档格式:PDF|
浏览次数:1|
上传日期: 03:30:02|
文档星级:
该用户还上传了这些文档
官方公共微信
下载文档:新疆冰达坂韧性剪切带构造变形分析.PDF中天山南缘桑树园子剪切带早志留世韧性变形事件及其地质意义
&&&&2014, Vol. 30 Issue (10):
王盟, 张进江, 戚国伟, 郑勇, 刘凯. 2014. 中天山南缘桑树园子剪切带早志留世韧性变形事件及其地质意义. 岩石学报,30(10): &&
Wang M, Zhang JJ, Qi GW, Zheng Y and Liu K. 2014. An Early Silurian ductile deformation event in the Sangshuyuanzi shear zone, the southern margin of the Central Tianshan belt, and its geological significance. Acta Petrologica Sinica,30(10):
(in Chinese with English abstract)&&
中天山南缘桑树园子剪切带早志留世韧性变形事件及其地质意义
王盟, 张进江 , 戚国伟, 郑勇, 刘凯&&&&
造山带与地壳演化教育部重点实验室, 北京大学地球与空间科学学院, 北京 100871
基金项目:本文受国家自然科学基金项目()、科技部重点基础研究项目()和中国地质局地质调查项目(00、00、5)联合资助。
第一作者简介:王盟,男,1987年生,博士生,构造地质学专业,Email:
通讯作者:张进江,男,1964年生,博士,教授,构造地质学专业,Email: zhjj@
摘要:桑树园子剪切带位于中天山南缘,经历了多期韧性变形事件。对其变形样式和变形历史进行深入研究有利于加深对天山造山带构造演化的认识。本文对剪切带北部发生强烈韧性变形的岩石进行变形样式及相关年代学研究,识别出一期早志留世右旋剪切运动。该期走滑剪切事件造成部分前寒武纪斜长角闪岩发生深熔作用形成浅色脉体,使花岗闪长岩发生强烈的糜棱岩化石,并伴随同构造花岗质脉体的侵入。斜长角闪岩中浅色脉体中的锆石具弱的振荡环带或无环带,Th/U比值较低,具深熔作用中新生锆石的特点,其206Pb/238U加权平均年龄为430.1Ma。糜棱状花岗闪长岩样品锆石核部LA-ICPMS U-Pb年龄为496.3Ma,是中天山北缘古天山洋向南俯冲的记录。其锆石的变质增生边给出430.5Ma的年龄,记录了花岗闪长岩遭受后期糜棱岩化改造的时间。侵入花岗闪长岩中的同构造花岗质脉体也给出较为一致的432.9Ma的锆石结晶年龄。这一年龄范围与中天山北缘古天山洋盆闭合的时间一致,因此桑树园子剪切带北部在~430Ma的右旋走滑事件可能是吐哈地块与中天山碰撞事件的陆内响应。
变形年代学&&&&
桑树园子剪切带&&&&
中天山&&&&
An Early Silurian ductile deformation event in the Sangshuyuanzi shear zone, the southern margin of the Central Tianshan belt, and its geological significance
WANG Meng, ZHANG JinJiang , QI GuoWei, ZHENG Yong, LIU Kai&&&&
Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Science, Peking University, Beijing 100871, China
Abstract: The Sangshuyuanzi ductile shear zone on the southern margin of the Central Tianshan belt experienced multiple deformation events. The formation of the shear zone might be related to the closure of the Paleo-Tianshan Ocean or the South Tianshan Ocean and/or subsequent intra-continental strike-slip movement. A detailed study on the deformation style and deformation history of the Sangshuyuanzi shear zone is vital to understand the tectonic evolution history of the Tianshan orogen. An Early Silurian right-lateral strike-slip event is identified in the northern part of the shear zone based on detailed field observation and tectonochronological study. Rocks involved in the shear zone include Precambrian basement rocks of the Central Tianshan belt, Early Paleozoic granitic intrusions and syn-shearing granitic dykes. The amphibolite is part of the basement rocks of the Central Tianshan belt, and consists of some leucosomes that occur along the foliation of the amphibolite. The leucosomes veins are isolated, rootless and occur widely in the amphibolite with different sizes ranging from several meters long and 10~20cm wide to several centimeters long and 2~3mm wide. All the above features show the felsic veins formed during anatexis caused by regional shearing. Besides, there are some felsic veins occurred as structural lens, which might migrate from deep crust and intrude the amphibolite during shearing. The shapes of the structural lens show a sense of dextral shearing. The mylonitic granodiorite are characterized by well-developed foliation and lineation. They have a foliation of about 190°∠70° (dip∠dip angle). Felsic minerals like feldspar and quartz were elongated to form lineation. The lineation dips to the east (100°) with an angle of about 15°. Dynamic recrystallization of feldspar and quartz are common in the mylonitic granodiorite. The syn-shearing granitic dykes that intrude the mylonites vary in size from several tens of meters long and 20~30cm wide to several tens of centimeters long and several centimeters wide. They also show characteristics of ductile deformation, but weaker than the host mylonitic granodiorite. In thin sections, the feldspar and quartz display distinct wavy extinction, and some of the grains experience dynamic recrystallization. The granitic dykes were first emplaced along the foliation, tension fractures or extensional crenulation cleavage and were folded or offset during continuous shearing. The fold characteristic also indicates a sense of dextral shearing. The deformation age of the shear zone was determined by LA-ICPMS U-Pb dating on zircons from the leucosome of the amphibolite, the mylonitic granodiorite and the syn-shearing granitic dykes. Zircons from the leucosome of the amphibolite show weak (or without) oscillatory zoning structure and low Th/U ratios, akin to the features of zircons formed during anatexis. They yield a formation age of 430.1Ma, which represent the age of shearing. Zircons from the mylonitic granodiorite have core-rime structures with magmatic cores and metamorphic rims. 18 analyses on the magmatic zircon cores give a weighted 206Pb/238U age of 496.3Ma, which indicate that the subduction of the Palaeozoic Tianshan Ocean beneath the Central Tianshan belt was ongoing during the Late Cambrian. The metamorphic zircon rims have a weighted average 206Pb/238U age of 430.5Ma, which records the deformation age of the granodiorite. The syn-shearing granitic dykes in the mylonitic granodiorite have a more complex zircon age group ranging from 2929Ma to 430Ma. The crystallization age of the granitic dykes is believed to be 432.9Ma, based on weighted average ages of the six youngest zircons with obvious features of magmatic origin. This age also represents the deformation age of the shear zone. The older ages are thought to be captured from the surrounding rocks when magma migration. The consistent ca. 430Ma age from all the three samples constraints an important Early Silurian right-lateral strike-slip event. This time is consistent with the closure time of the Palaeo-Tianshan Ocean to the north of the Central Tianshan belt. We thus regard the Early Silurian dextral movement of the Sangshuyuanzi shear zone as an intra-continental deformation event that caused by the collision between the Tuha Terrane and the Central Tianshan belt.
Key words:
Deformation geochronology&&&&
Zircon&&&&
Sangshuyuanzi shear zone&&&&
Central Tianshan&&&&
造山带及其周缘地区常发育大型韧性剪切带,通常被认为是对块体碰撞事件或造山后的调整响应(; ; ),例如,中天山地块南北两缘及内部就发育这样的大型韧性剪切带(图 1;;;;)。中天山南缘韧性剪切带位于中天山地块和南天山造山带之间,是一条重要的边界断裂(,; ; )。前人对其进行过一些运动学和构造年代学的研究,但对其剪切方向和变形时代争议颇大。部分学者认为该剪切带为一左旋走滑韧性剪切带(; ; ),变形时代为中晚泥盆世,是塔里木板块和哈萨克-伊犁板块斜向碰撞形成的同碰撞走滑构造带()。另一部分学者认为该剪切带为一右旋走滑剪切带,主变形时代为二叠纪,对应于中天山和南天山的碰撞后的陆内走滑事件(; ,; )。
准确厘定中天山南缘韧性剪切带的剪切指向和相关时代,对于深入了解天山造山带构造演化具有重要参考价值。中天山南缘剪切带在库米什以北桑树园子地区出露良好,故将其命名为桑树园子剪切带,本次研究对该段剪切带北部露头进行了细致的野外观测,以确定其变形特征,并通过对剪切带中糜棱状斜长角闪岩中的浅色脉体、变形的花岗闪长岩和侵入其中的同构造花岗质脉体进行LA-ICPMS锆石U-Pb定年,确定其变形时代。
2 区域地质概况
桑树园子剪切带位于中天山南缘,北西西-南东东向延伸,宽度在5km以上,长度超过300km,是分割中天山和南天山的一条重要地质界线(图 1)。剪切带主要发育在前寒武纪变质基底地层当中,被南北两条晚期断裂所围限(图 1)。剪切带北侧为志留系阿哈布拉克群砂岩、粉砂岩、片岩、千枚岩等和下石炭统马鞍桥组底砾岩夹砂岩及灰岩,南侧为绿片岩相变质的泥盆纪片岩、大理岩和眼球状片麻岩(396Ma;)。剪切带内遭受变质变形作用的岩石主要包括中元古代星星峡群斜长角闪岩、各种副变质岩及后期侵位并变形的片麻状花岗岩()。这些片麻状花岗岩曾一度被认为是中天山元古代基底的一部分,但近期的研究表明大部分片麻状花岗岩就位于晚寒武-奥陶纪(;;),并在后期遭受变形改造。
图 1Fig. 1图 1 桑树园子剪切带区域地质简图
NTSF-北天山断裂;STSF-南天山断裂
Fig. 1 Regional geological sketch map of the Sangshuyuanzi shear zone
3 桑树园子剪切带北部韧性变形特征
桑树园子剪切带内部岩石均遭受不同程度变形,并形成反映剪切变形特征的糜棱岩带。研究区糜棱岩原岩主要为斜长角闪岩和花岗闪长岩,在花岗闪长岩中发育有同构造花岗质脉体的侵入。
糜棱岩化的斜长角闪岩为中天山基底的重要组成部分,其面理走向与韧性带延伸方向一致,说明其变形受区域性韧性剪切作用控制。顺斜长角闪岩面理方向分布一些浅色脉体(图 2a),其规模大小不一,大者长达数米,宽度10~20cm;小者长仅几厘米,宽只有2~3mm。这些浅色脉体均孤立、无根,与围岩(斜长角闪岩)相间产出,同期变形形成紧闭褶皱或肠状褶皱(图 2a)。研究区内这些长英质脉体的发育仅局限在剪切带内部,其产出方向与剪切带构造面理方向完全一致。另外,少数脉体中仍保留由暗色矿物组成的微弱面理和线理(同构造熔融作用的残留体),在斜长角闪岩中也常见细小、无根的长英质脉体,这种相互包裹的关系说明长英质脉体可能为斜长角闪岩原地剪切熔融的产物。糜棱状斜长角闪岩中同时发育异地侵位的长英质脉体,这些脉体均发生变形,形成构造布丁等(图 2b)。根据浅色脉体的褶皱形态(图 2a)和长英质透镜体两侧拖尾的特征(图 2b),可以判断剪切方式为右旋。
图 2Fig. 2图 2 桑树园子剪切带北部斜长角闪岩、糜棱状花岗闪长岩和同构造花岗质脉体野外露头照片及同构造花岗质脉体形成过程示意图
(a)-斜长角闪岩中长英质脉体与角闪岩基体形成的紧闭褶皱,指示右旋剪切;(b)-斜长角闪岩中长英质脉体形成的布丁构造,指示右旋剪切;(c)-糜棱状花岗闪长岩野外露头及面理和线理投影(P-面理;L-线理);(d)-侵入糜棱状花岗闪长岩中的同构造花岗质脉体(指示右旋剪切运动);(e)-对图 2d同构造花岗质脉体形成过程的构造恢复
Fig. 2 Outcrops of the mylonitic amphibolite and granodiorite, and syn-shearing granitic dykes in the northern part of the Sangshuyuanzi shear zone
糜棱状花岗闪长岩线理构造发育(图 2c),其中石英、斜长石等矿物定向排列,构成矿物拉伸线理,线理产状100°∠15°左右(倾伏向∠倾伏角);新生矿物如云母、绿泥石等矿物定向排列,与长英质矿物相间互层产出,形成面理,面理产状集中在190°∠70°(倾向∠倾角)左右,与剪切带延伸方向一致。花岗闪长岩内部变形不均匀,局部出现细粒化条带。显微镜下可见大量动态重结晶的石英颗粒;长石也出现核幔结构,边部出现大量小颗粒,为剪切过程中动态重结晶所致。
在局部区域,还可以见到侵入于糜棱状花岗闪长岩中并与其同期变形的花岗质脉体(图 2d)。这些脉体规模大小不一,大者长达数米至数十米,宽20~30cm;小者延伸长度不等,但宽度只有几厘米。这些花岗质脉体均表现出一定程度的韧性变形,但其变形程度明显弱于围岩;与围岩接触的边界部位变形最为强烈,向内部逐渐减弱。根据其空间展布形态可将脉体分为两类,一类与糜棱面理走向一致,另一类斜切糜棱岩面理并已发生褶皱和错断。构造恢复推断这些斜切脉体是在右行剪切过程中同构造侵位形成的,最初沿剪切带的伸展褶劈理或与压扭方向平行的张裂隙贯入,而后在持续的剪切作用下发生错断或形成褶皱(图 2e),其错断和褶皱反映的运动方向与围岩的运动一致。以上特征均与大型走滑带内同构造花岗岩的判别标志相符合(),说明这些花岗质脉体与区域性的剪切作用是同期的。根据同构造花岗质脉体与围岩面理的斜交关系和褶皱形态,可判断剪切方向为右旋(图 2d,e)。
4 桑树园子剪切带变形年代学
4.1 样品描述
为确定桑树园子剪切带的剪切变形时间,我们选取剪切带内斜长角闪岩中的原地浅色脉体、糜棱状花岗闪长岩及侵位于其中的同构造花岗质脉体,进行LA-ICPMS锆石U-Pb年代学分析。
样品TS11-34采自斜长角闪岩中的长英质脉体,岩石呈白色,块状构造,变形较弱(图 3a)。主要矿物组成为长石(70%),石英(27%)和少量黑云母(3%)。长石以斜长石为主,并有少量微斜长石;石英粒度较小,呈他形充填在长石的缝隙当中(图 3b),明显为动态重结晶产物。长石和石英的波状消光不太明显,可能后期经历了静态恢复。
图 3Fig. 3图 3 桑树园子剪切带北部测年样品手标本和镜下照片
(a)-斜长角闪岩中长英质脉体手标本照片;(b)-长英质脉体镜下显微照片;(c)-糜棱状花岗闪长岩手标本照片;(d)-糜棱状花岗闪长岩镜下照片;(e)-同构造花岗质脉体手标本照片;(f)-同构造花岗质脉体镜下照片,可见长石和石英的波状消光.Pl-斜长石;Kfs-钾长石;Qtz-石英;Bi-黑云母;Mu-白云母
Fig. 3 H and specimen and microphotographs of the samples for zircon U-Pb dating in the northern part of the Sangshuyuanzi shear zone
样品TS11-32采自糜棱状花岗闪长岩体,岩石呈灰色,糜棱状结构,块状构造(图 3c)。长英质矿物被压扁拉长定向排列,形成线理;面理产状与区域性走滑面理产状一致。主要矿物组成为长石(70%)、石英(20%)、黑云母(5%)、少量角闪石和辉石(5%)。石英因动态重结晶而发生细粒化,长石的边部也发生了重结晶而形成核幔构造(图 3d)。
样品TS11-35采自侵入糜棱状花岗闪长岩中的同构造花岗质脉体,岩石呈灰白色,不等粒结构,块状构造,具弱的面理(图 3e)。其主要矿物组成为石英(75%),长石(20%~52%)和少量白云母(3%~5%)(图 3f)。石英一般具波状消光现象,部分颗粒细粒化,颗粒边界呈港湾状或锯齿状,为动态重结晶的结果;长石包括钾长石、斜长石和条纹长石,均具波状消光现象,长石颗粒的周围也出现动态重结晶颗粒;白云母呈细小的鳞片状分布在长石和石英的颗粒边界处,解理方向与岩石片理方向基本一致。
4.2 测试方法
锆石单矿物分选工作在河北省诚信地质服务有限公司完成。将岩石样品粉碎至80~100目,经常规浮选和磁选方法后,在双筒目镜下挑选出锆石颗粒。将晶型较好的锆石颗粒排列于双面胶后用环氧树脂灌注成激光样品靶,将其抛光处理后进行锆石样品的反射光和透射光显微照相。而后在北京大学造山带与地壳演化教育部重点实验室进行锆石阴极发光照相分析,以确定适合分析的锆石颗粒和激光剥蚀位置。
锆石的LA-ICP-MS U-Pb年代学测试在西北大学大陆动力学国家重点实验室完成。激光剥蚀系统为MicroLas公司生产的Geolas200M,由德国Lambda Physik公司的ComPlex102 ArF准分子激光器(波长193nm)和MicroLas公司设计的光学系统组成。元素分析仪器为Agilent 7500a电感耦合等离子体质谱仪(ICP-MS,美国Agilent公司生产),数据采集采用跳峰方式。测试过程中用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM 610进行仪器最佳化。锆石U-Pb年龄测定采用国际标准锆石91500作为外标校正,每测定6个点后测定一次标样。微量元素含量以29Si作内标,测定样品15个点前后各测2次NIST SRM610,保证了标准样品和所测样品的仪器条件完全一致。详细实验过程、仪器参数可参考()。207Pb/206Pb,206Pb/238U和237Pb/235U比值的计算采用GLITTER 4.0软件(Macquarie University),并用 ()的方法进行普通铅校正,年龄谐和图制作采用ISOPLOT 3.0()程序完成。进行锆石表观年龄解释时,对大于1000Ma的锆石采用207Pb/206Pb年龄,小于1000Ma的锆石采用206Pb/238U年龄()。
4.3 测试结果
斜长角闪岩浅色脉体(TS11-34)中的锆石一般呈自形或半自形结构,长度50~150μm,在CL图像上一般无分带或弱分带(图 4a)。16个锆石分析点的Th和U含量分别为5.78×10-6~101.5×10-6和275.8×10-6~970.9×10-6,相应的Th/U比值为0.01~0.30(平均0.05;表 1),具有深熔作用过程中新生锆石的特点。样品的206Pb/238U年龄分布于427~514Ma,其中分布较为集中的11个测点加权平均年龄为430.1±1.9Ma(图 4b;MSWD=0.19),代表脉体的结晶时间。其余5颗锆石年龄为462~514Ma,可能是前期热事件中残留的锆石。
图 4Fig. 4图 4 桑树园子剪切带北部糜棱状斜长角闪岩中长英质脉体(a,b)、花岗闪长岩(c,d)和同构造花岗质脉体(e,f)中锆石阴极发光图像和U-Pb定年结果
Fig. 4 Representative CL images and U-Pb dating results of zircons from the felsic veins of the amphibolite(a,b),the mylonitic granodiorite(c,d) and the syn-shearing granitic dyke(e,f)in the northern part of the Sangshuyuanzi shear zone
表 1Table 1表 1(Table 1)表 1 桑树园子剪切带北部混合岩中长英质脉体、糜棱岩化花岗闪长岩和同构造花岗质脉体中锆石LA-ICPMS定年结果
Table 1 The LA-ICPMS data for the zircons from the felsic veins of the migmatite,the mylonitic granodiorite and the syn-shearing granitic dyke in the northern part of the Sangshuyuanzi shear zone
测点号同位素比值年龄(Ma)谐和度含量(×10-6)Th/U
207Pb206Pb1s207Pb235U1s206Pb238U1s207Pb206Pb1s207Pb235U1s206Pb238U1s 232Th238U
TS11-34混合岩中长英质脉体
TS11-34-010.05610.00240.61290.02480.07920.0010457684851649160.99242760.09
TS11-34-020.05610.00170.53550.01490.06920.0006457454351043141.01254190.06
TS11-34-030.05560.00180.53060.01590.06920.0006438724321143141.00264920.05
TS11-34-040.05580.00110.53070.01010.06890.000544646432743031.00156070.02
TS11-34-050.05700.00150.54400.01320.06920.000649258441943131.02185250.03
TS11-34-090.05540.00200.52380.01840.06850.0007430834281242741.00135960.02
TS11-34-100.05600.00130.53490.01130.06930.000545351435743231.01258260.03
TS11-34-110.05760.00160.62050.01600.07820.0007514614901048541.0174540.01
TS11-34-160.05880.00270.60160.02650.07420.00085591014781746251.031013410.30
TS11-34-190.05790.00130.55140.01200.06900.000552752446843031.04186300.03
TS11-34-220.05610.00150.53080.01320.06860.000545659432942831.01187370.02
TS11-34-240.05630.00140.53590.01280.06910.000646357436843131.01367250.05
TS11-34-250.05810.00160.66480.01680.08300.0007533405181051441.0164960.01
TS11-34-280.06160.00130.64940.01250.07650.000666028508847541.07147940.02
TS11-34-290.05720.00140.54460.01280.06900.000650056441843031.0399710.01
TS11-34-300.06180.00190.58590.01680.06880.0007667454681142941.09255070.05
TS11-32糜棱岩化花岗闪长岩
TS11-32-010.05910.00170.65700.01610.08060.0011571305131050070.97643760.17
TS11-32-020.05650.00180.61700.01670.07930.0011471354881049271.01622620.24
TS11-32-030.05270.00170.49880.01420.06870.0010314394111042861.04642200.29
TS11-32-040.05530.00170.60980.01650.08000.0012423354831049671.03623860.16
TS11-32-050.05870.00170.65240.01620.08060.0011556305101050070.98632540.25
TS11-32-060.05330.00180.59640.01770.08110.0012343414751150371.06472290.21
TS11-32-070.05320.00200.59420.02040.08100.0012336504741350271.06281370.20
TS11-32-080.05390.00150.51630.01210.06940.001036729423843361.021173940.30
TS11-32-090.05670.00230.54190.01990.06930.0011480544401343270.98502480.20
TS11-32-100.05640.00220.60220.02120.07750.0012466514791348171.00343200.11
TS11-32-110.05620.00150.62510.01290.08060.001146124493850061.01714410.16
TS11-32-120.05550.00160.61310.01510.08010.0011430314861049771.02392910.14
TS11-32-130.05770.00160.64060.01420.08050.001151826503949960.99443840.12
TS11-32-140.05680.00160.62970.01470.08030.001148429496949861.00483490.14
TS11-32-150.05540.00150.52680.01170.06890.000942827430843051.00904500.20
TS11-32-160.05650.00160.54000.01250.06930.000947228438843260.99774270.18
TS11-32-170.05530.00180.60510.01640.07930.0011425364801049271.03843380.25
TS11-32-180.05820.00190.63990.01740.07970.0011538355021149470.98562850.20
TS11-32-190.05670.00220.62010.02120.07930.0012479494901349271.00622420.26
TS11-32-200.05770.00180.62390.01640.07850.0011516344921048760.991074370.25
TS11-32-210.05830.00190.64420.01740.08020.0011539365051149770.98612530.24
TS11-32-220.05900.00250.61570.02390.07570.0011566934871547070.97291430.20
TS11-32-230.05840.00230.63350.02190.07860.0012546504981448870.98331660.20
TS11-32-240.05700.00190.63270.01840.08060.0011490404981149971.00803460.23
TS11-32-250.05610.00190.62000.01800.08010.0011458404901149771.01392460.16
TS11-32-280.05620.00290.58660.02910.07570.00124621184691947071.00381800.21
TS11-32-290.05600.00160.53050.01270.06880.000945131432842950.99713960.18
TS11-32-300.05600.00200.59690.01870.07740.0011452454751248171.0146200
TS11-35同构造花岗质脉体
TS11-35-010.05980.00340.57120.03140.06930.00085961004592043251.061612690.60
TS11-35-020.05760.00150.54810.01290.06900.000651537444843031.036437410.87
TS11-35-030.06950.00241.40660.04680.14690.00189124889220883101.011632850.57
TS11-35-040.07000.00181.50960.03560.15640.0015928339341493781.00461350.34
TS11-35-050.06090.00170.58600.01560.06980.0006637414681043541.082342261.03
TS11-35-060.16280.00289.87780.14400.44000.00392485302423132350181.03481360.35
TS11-35-070.05860.00270.70570.03120.08740.00095511025421954051.001542360.65
TS11-35-080.07700.00211.79760.04630.16940.0015112056104517100981.041472370.62
TS11-35-090.07820.00102.02490.01830.18770.00121153911246110971.0120714960.14
TS11-35-100.07260.00211.50790.04160.15070.00161003399341790591.03652020.32
TS11-35-110.09320.00143.34940.04130.26060.00191493131493101493101.001573230.49
TS11-35-130.07100.00121.59930.02240.16330.001295817970997570.993285710.57
TS11-35-140.07280.00091.63700.01720.16310.0011100826985797461.01909010.10
TS11-35-150.09270.00282.89500.08260.22640.00231482591381221316121.051461930.76
TS11-35-160.05850.00150.65130.01620.08080.0006548585091050141.022886660.43
TS11-35-170.18140.002712.10490.14900.48400.00402666252613122544171.031172590.45
TS11-35-180.07540.00131.78550.02710.17180.0013107818104010102271.021585260.30
TS11-35-190.06290.00270.60040.02490.06930.0007704944771643241.101052420.44
TS11-35-200.06960.00241.37900.04450.14370.0017917478801986591.02611090.56
TS11-35-210.06170.00150.99660.02260.11720.0010663347021171460.98933510.26
TS11-35-220.10190.00303.46640.09500.24690.00231658551520221422121.071371560.88
TS11-35-230.10250.00243.87520.08350.27420.00251670441609171562131.031172000.58
TS11-35-240.05780.00420.55850.03970.07010.00115211304512643771.033012841.06
TS11-35-250.15540.00209.63440.09620.44960.003424078240092393151.001813340.54
TS11-35-260.05760.00150.68230.01630.08600.0008513375281053240.992343770.62
TS11-35-270.21310.003516.18360.25000.55080.00612929122888152828251.0256610.92
TS11-35-280.05720.00200.55140.01830.07000.0006498574461243641.023343830.87
TS11-35-290.19700.002714.78910.17160.54460.0047280192802112802201.0058960.60
TS11-35-300.05710.00120.61250.01220.07780.000649430485848341.005557300.76
表 1 桑树园子剪切带北部混合岩中长英质脉体、糜棱岩化花岗闪长岩和同构造花岗质脉体中锆石LA-ICPMS定年结果
Table 1 The LA-ICPMS data for the zircons from the felsic veins of the migmatite,the mylonitic granodiorite and the syn-shearing granitic dyke in the northern part of the Sangshuyuanzi shear zone
糜棱状花岗闪长岩样品(TS11-32)中锆石一般较自形,长度150~300μm。锆石CL图像显示,大部分锆石具有核-边结构,核部具明显岩浆震荡环带,而边部则呈弱分带、无分带或面状分带,具有变质成因锆石的特点(图 4c)。对其中的28颗锆石进行了30个点的U-Pb年龄测定,获得28个有效年龄数据(表 1),其中22个点位于锆石核部,6个点位于边部。位于锆石核部的分析点的年龄变化范围较大为470~503Ma,其中较为集中的18个测点的加权平均年龄为496.3±3.1Ma(图 4d;MSWD=0.47),代表了岩体的形成时间。位于边部的6个分析点的年龄集中在428~433Ma,加权平均值为430.5±4.6Ma(图 4d;MSWD=0.11),代表了花岗闪长岩体发生糜棱岩化的时间。而另外4个分析点的年龄小于岩体形成时间,而大于变形时间,可能代表了二者的混合年龄。
同构造花岗质脉体TS11-35中的锆石一般为半自形或他形,粒径从<50μm到100μm不等。CL图像揭示至少存在3类锆石:(1)较自形,发育较明显的岩浆振荡环带(图 4e);(2)他形,弱分带或无分带;(3)半自形,阴极发光下显 示为黑色。对其中的30颗锆石进行U-Pb同位素的测定,得到29个有效数据点的U-Pb年龄分布于Ma(表 1)。
其中第一类锆石具有较高的Th/U比值(0.44~1.06),6个分析点的年龄范围为437~430Ma,加权平均值为432.9±3.3Ma(图 4f;MSWD=0.45),代表同构造花岗质脉体的形成时间。第二类锆石有19个分析点,其Th/U比值为0.32~0.91,年龄分布较广(Ma)。第三类锆石包括4个分析点(测点TS11-35-9,14,18,21),其207Pb/206Pb表面年龄值分别为1153Ma,1078Ma,1008Ma和714Ma。其Th/U比值较低(0.1~0.3),阴极发光呈黑色,显示变质流体成因锆石的特点()。
5.1 桑树园子剪切带变形时代及其意义
野外产出状态和变形运动学分析结果显示,侵入糜棱状花岗闪长岩中的花岗质脉体为同构造花岗岩(图 2d,e)。糜棱状花岗闪长岩中锆石有两组年龄,锆石核部发育典型震荡环带,其加权平均年龄为496.3Ma,代表了岩体的结晶年龄;锆石边部呈现黑色无分带或弱分带的变质成因特点,其加权平均年龄430.5Ma代表了岩体发生糜棱岩化改造的年龄。同构造花岗质脉体中最年轻的一组锆石年龄为432.9Ma,这些锆石具有良好的环带结构和较高的Th/U比值,为岩浆成因锆石。这一年龄与其围岩(糜棱状花岗闪长岩)的锆石结晶年龄差别很大,而与围岩中锆石的变质边的年龄一致。因此可以断定同构造花岗质脉体中这组432.9Ma的锆石并非捕获的围岩锆石,而是在同剪切侵位过程中结晶的锆石。
糜棱状斜长角闪岩中长英质脉体的锆石加权平均年龄为430.1Ma,与糜棱岩化花岗闪长岩样品中锆石边部的变质年龄(430.5Ma)和同构造花岗质脉体中所获得的岩浆结晶年龄(432.9Ma)具有非常好的一致性。这组锆石均无分带或弱分带,Th/U比值较低,具变质成因的锆石特点。同剪切深熔作用过程所产生的变质流体中的新生锆石也一般具有这种特点(; )。另外,野外接触关系和变形特点也显示长英质脉体与斜长角闪岩具有相同的变形历史。据此我们推测,这些长英质脉体可能为同剪切熔融过程的产物。三个与剪切作用密切相关的样品中得到近乎一致的年龄,相互印证,由此可以断定桑树园子剪切带北部在~430Ma曾发生过一期重要的右旋走滑运动。
从构造位置上来看,桑树园子剪切带位于中天山地块的南缘,其形成可能与南天山洋的闭合过程相关(; )。但对库米什地区变形花岗岩进行研究,认为其形成于活动大陆边缘环境,库米什以北的地区仍属于中天山地块的范畴。因此桑树园子剪切带可能不是板块边界,而是发育在中天山地块内部的剪切带。
从时间上来看,桑树园子剪切带这期早志留世的韧性变形事件与区域上中天山地块北缘古天山洋盆的闭合事件具有良好的对应关系。托克逊以南20km的干沟蛇绿混杂岩普遍遭受绿片岩相变质,并被基本未变质的下志留统米什沟组复理石沉积不整合覆盖,说明古天山洋在早志留世之前已经闭合()。干沟地区沿中天山北缘断裂带分布的眼球状花岗岩侵入到蛇绿混杂岩地层当中,具有与同碰撞-后碰撞花岗岩类似的地球化学特征,其SHRIMP锆石U-Pb年龄(428Ma)为古天山洋在干沟地区的最终闭合提供了上限()。中天山北缘韧性剪切带胜利达坂地区片麻状花岗岩中变质增生锆石边的年龄为440.9Ma,精确限定了中天山北缘古天山洋闭合与碰撞造山的时代()。这一碰撞事件同时造成了中天山地壳加厚,在望峰地区和托克逊以南的中天山地区形成同碰撞S型花岗岩(439.9Ma,; 424.5Ma,)。桑树园子剪切带北部韧性变形发生在~430Ma,可能是中天山北缘古天山洋盆闭合及相应的早古生代碰撞造山事件在中天山地块内部的响应。
前人曾在桑树园子剪切带糜棱岩样品中获得393Ma的白云母40Ar-39Ar坪年龄()。这一年龄与在榆树沟地区糜棱岩化的辉长岩中所获得的变质锆石的年龄(403Ma)在误差范围内一致。也曾报道库米什北部花岗质片麻岩(原岩锆石SHRIMP U-Pb年龄481Ma)中存在一组405Ma的锆石年龄。~400Ma的这期变质事件可能对应于塔里木板块与中天山地块初始碰撞事件()。这一事件也造成库米什北部中天山地区和南天山硫磺山地区下石炭统马鞍桥组与前石炭系地层的区域性不整合接触关系(; )。
早二叠世时期,整个天山地区进入后碰撞演化阶段,发生大规模陆内右旋走滑作用(,; ,)。中天山南缘桑树园子剪切带右旋走滑发育时间为300~290Ma(; )。
总之,本文所发现的早志留世变形,加上前人发现的早泥盆世晚期和早二叠世的两期变形,说明桑树园子剪切带可能经历了至少3期的韧性变形事件。第一期变形为右旋剪切,发生在~430Ma,对应于吐哈陆块与中天山地块的碰撞事件;第二期变形为左旋剪切,发生在~400Ma,对应于塔里木陆块与中天山地块的初始碰撞事件;第三期变形为右旋剪切,发生在300~290Ma,对应于造山结束后的陆内调整。
5.2 晚寒武世岩浆活动的记录
本研究所采糜棱状花岗闪长岩中锆石核部具有明显的岩浆震荡环带,其18个数据点的加权平均年龄496.3Ma代表了花岗闪长岩的结晶年龄。该花岗闪长岩具弱过铝质I型花岗岩的地球化学特征,形成于以干沟蛇绿岩所代表的古天山洋向南俯冲的活动大陆边缘环境()。位于吐哈地块与塔里木地块之间的古天山洋从晚寒武世开始发生向南的俯冲消减作用,形成以干沟SSZ型火山岩及混杂基质为代表的活动大陆边缘火山沉积建造()。而近年来在桑树园子一带识别出的大量早古生代片麻状花岗岩(; ; ; ; ),为早古生代的俯冲事件提供了另一有力的证据。
5.3 中天山前寒武纪基底的年龄记录
同构造花岗质脉体TS11-35中存在许多前寒武纪的锆石,其年龄范围为Ma,说明同构造花岗质脉体的源区可能是变质沉积岩,或者至少其迁移侵位过程中曾捕获变质沉积岩中的锆石。这些年龄集中在Ma,并有Ma的锆石年龄,对应于中天山构造带东段一次与格林威尔期相关的碰撞或增生事件()和中元古代早期(1.6~1.3Ga)的全球大陆地壳主要增生期()。
另外,同构造花岗质脉体中存在三粒新太古代锆石(Ma),为库米什地区中天山地块存在太古代的地壳物质提供了间接的证据。此前对中天山出露的前寒武纪岩石的研究中鲜有太古代年龄的报道,也没有太古代tDM值出现(,),因此认为中天山地块的基底岩石主要形成于古元古代和中元古代(; ; ,; ; )。但近年来碎屑锆石年代学的广泛应用为揭示早前寒武纪的大陆演化信息提供了新的途径,如在干沟地区变质沉积岩中获得一粒3320Ma的碎屑锆石,Ma et al.(2012)对巴仑台地区中天山地块泥盆纪沉积岩中碎屑锆石的分析也揭示了中天山地区新太古代地壳物质的存在。
(1)桑树园子剪切带北部发育变形强烈的斜长角闪岩和糜棱状花岗闪长岩,并伴有同构造花岗质脉体的侵入,运动学标志指示其具有右旋剪切性质。侵入糜棱状花岗闪长岩中的同构造花岗质脉体具有432.9Ma的锆石结晶年龄。这一年龄与糜棱状花岗闪长岩锆石变质边的年龄(430.5Ma)和斜长角闪岩中浅色脉体的锆石年龄(430.1Ma)基本一致。以上三组年龄相互印证,说明桑树园子剪切带在~430Ma发生过一期重要的右旋韧性剪切事件,可能是中天山北缘古天山洋盆闭合及大陆碰撞所引起陆内变形的结果。
(2)桑树园子剪切带北部糜棱岩化花岗闪长岩形成于496.3Ma,是以干沟蛇绿岩为代表的古天山洋向南俯冲形成的岛弧岩浆活动的产物。
(3)同构造花岗质脉体中Ma的捕获锆石为库米什地区中天山地块存在太古代地壳物质提供了间接的证据。
致谢 锆石LA-ICP-MS测年过程中得到西北大学大陆动力学国家重点实验室柳小明教授的帮助;林伟教授审阅全文并给出了建设性的修改意见;在此深表感谢。
Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol., 192(1-2): 59-79
Black LP, Kamo SL, Williams IS, Mundil R, Davis DW, Korsch RJ and Foudoulis C. 2003. The application of SHRIMP to Phanerozoic geochronology: A critical appraisal of four zircon standards.
Chen YB, Zhang GW, Liu XM, Xiong XL, Yuan C and Chen LL. 2012. Zircon LA-ICP-MS U-Pb dating on the Baluntai deformed granitoids, Central Tianshan Block, Northwest China, and its tectonic implications. Geological Review, 58(1): 117-125 (in Chinese with English abstract)
Deng ST, Guo ZJ, Zhang ZC and Liao GH. 2006. Timing of the formation of the Sangshuyuanzi ductile shear zone in the central segment of the South Tianshan and its tectonic significance.
Dong YP, Zhou DW, Zhang GW, Zhao X, Luo JH and Xu JG. 2006. Geology and geochemistry of the Gangou ophiolitic mélange at the northern margin of the Middle Tianshan Belt. Acta Petrologica Sinica, 22(1): 49-56 (in Chinese with English abstract)
Dong YP, Zhang GW, Neubauer F, Liu XM, Hauzenberger C, Zhou DW and Li W. 2011. Syn- and post-collisional granitoids in the Central Tianshan orogen: Geochemistry, geochronology and implications for tectonic evolution. Gondwana Research, 20(2-3): 568-581
Gao J, Li MS, Xiao XC, Tang YQ and He GQ. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China.
Gao J, Long LL, Qian Q, Huang DZ, Su W and Klemd R. 2006. South Tianshan: A Late Paleozoic or a Triassic orogen? Acta Petrologica Sinica, 22 (5):
(in Chinese with English abstract)
Gao J, Long LL, Klemd R, Qian Q, Liu DY, Xiong XM, Su W, Liu W, Wang YT and Yang FQ. 2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geochemical and age constraints of granitoid rocks.
Gao J, Qian Q, Long LL, Zhang X, Li JL and Su W. 2009. Accretionary orogenic process of western Tianshan, China. Geological Bulletin of China, 28(12):
(in Chinese with English abstract)
Han BF, He GQ, Wu TR and Li HM. 2004. Zircon U-Pb dating and geochemical features of Early Paleozoic granites from Tianshan, Xinjiang: Implications for tectonic evolution.
He ZY, Zhang ZM, Zong KQ, Wang W and Yu F. 2012. Zircon geochronology of Xingxingxia quartz dioritic gneisses: Implications for the tectonic evolution and Precambrian basement affinity of Chinese Tianshan orogenic belt.
Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia.
Hu AQ, Jahn BM, Zhang GX, Chen YB and Zhang QF. 2000. Crustal evolution and Phanerozoic crustal growth in Northern Xinjiang: Nd isotopic evidence. Part 1. Isotopic characterization of basement rocks.
Huang G, Jia ZK, Li HM, Wang XL and Guo J. 2012. Early Ordovician arc magmatite in Central Tianshan: Evidence of geochronology and geochemical on granitic gneiss from Sangshuyuanzi area. Xinjiang Geology, 30(3): 243-252 (in Chinese with English abstract)
Laurent-Charvet S, Charvet J, Shu LS, Ma RS and Lu HF. 2002. Palaeozoic late collisional strike-slip deformations in Tianshan and Altay, eastern Xinjiang, NW China.
Laurent-Charvet S, Charvet J, Monié P and Shu LS. 2003. Late Paleozoic strike-slip shear zones in eastern central Asia (NW China): New structural and geochronological data.
Li QG, Liu SW, Han BF and Zhang J. 2003. Nd isotope characteristics of the Proterozoic metasedimentary rocks in the eastern part of Central Tianshan, Xinjiang region, and its provenance indication. Progress in Natural Science, 13(7): 761-766 (in Chinese)
Li QG, Liu SW, Song B, Wang YB and Chen YZ. 2008. Late Mesoproterozoic to Paleozoic tectonothermal events in the eastern segment of the Central Tianshan tectonic zone of Northwestern China: Constraints from SHRIMP zircon geochronology. Earth Science Frontiers, 16(2): 175-184 (in Chinese with English abstract)
Lin W, Faure M, Shi YH, Wang QC and Li Z. 2009. Palaeozoic tectonics of the south-western Chinese Tianshan: New insights from a structural study of the high-pressure/low-temperature metamorphic belt.
Lin YH, Zhang ZM, He ZY, Dong X and Yu F. 2011. Variscan orogeny of Central Tianshan Mountains: Constrains from zircon U-Pb chronology of high-grade metamorphic rocks. Geology in China, 38(4): 820-828 (in Chinese with English abstract)
Liu SW, Guo ZJ, Zhang ZC, Li QG and Zheng HF. 2004. Nature of the Precambrian metamorphic blocks in the eastern segment of Central Tianshan: Constraint from geochronology and Nd isotopic geochemistry.
Ludwig KR, 2003. ISOPLOT 3.0: A geochronological toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center Special Publication, No.4
Ma XX, Shu LS, Santosh M and Li JY. 2012. Detrital zircon U-Pb geochronology and Hf isotope data from Central Tianshan suggesting a link with the Tarim Block: Implications on Proterozoic supercontinent history.
Ma XX, Shu LS, Meert JG and Li JY. 2014. The Paleozoic evolution of Central Tianshan: Geochemical and geochronological evidence.
Shi YR, Liu DY, Zhang Q, Jian P, Zhang FQ and Miao LC. 2007. SHRIMP zircon U-Pb dating of the Gangou granitoids, Central Tianshan Mountains, Northwest China and tectonic significances.
Shu LS, Charvet J and Ma RS. 1998. Study of a large scale Paleozoic dextral strike-slip ductile shear zone along the northern margin of the Central Tianshan, Xinjiang. Xinjiang Geology, 16: 326-336 (in Chinese with English abstract)
Shu LS, Lu HF, Yin DH and Wang B. 2003. Paleozoic accretion-collision events and kinematics of ductile deformation in the Central Southern Tianshan belt.
Tang Y, Yin FG, Wang LQ, Liao SY, Sun ZM and Sun J. 2013. Structural characterization of and geochronological constraints on sinistral strike-slip shearing along the southern segment of Chongshan shear zone, western Yunnan. Acta Petrologicia Sinica, 29(4):
(in Chinese with English abstract)
Tang ZM, Cai ZH, Wang ZX and Chen FY. 2011. Deformational characteristics of ductile shear zones in northern and southern margins of eastern central Tianshan.
Wang B, Shu LS, Cluzel D, Faure M and Charvet J. 2007. Geochemical constraints on Carboniferous volcanic rocks of the Yili Block (Xinjiang, NW China): Implication for the tectonic evolution of western Tianshan.
Wang B, Cluzel D, Shu LS, Faure M, Charvet J, Chen Y, Meffre S and de Jong K. 2009. Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permian transcurrent tectonics, western Chinese Tianshan.
Wang M, Zhang JJ, Zhang B and Qi GW. 2014. An Early Paleozoic collisional event along the northern margin of the Central Tianshan Block: Constraints from geochemistry and geochronology of granitic rocks. Journal of Asian Earth Sciences, doi: org/10.1016/j.jseaes.
Wang XJ, Wang GH, Zhuan SP, Li GD, Wang DQ and Wu LH. 2011. Late Ordovician collision and orogen in middle Tianshan: Evidences of geochemical analyses and geochronology on metamorphosed granitoid rocks. Acta Petrologica Sinica, 27(7):
(in Chinese with English abstract)
Wu YB, Zheng YF, Zhang SB, Zhao ZF, Wu FY and Liu XM. 2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China: Constraints on partial melting.
Xu ZQ, Li ST, Zhang JX, Yang JS, He BZ, Li HB, Lin CS and Cai ZH. 2011. Paleo-Asian and Tethyan tectonic systems with docking the Tarim block. Acta Petrologica Sinica, 27(1): 1-22 (in Chinese with English abstract)
Yang JS, Xu XZ, Li TF, Chen SY, Ren YF, Li JY and Liu Z. 2011. U-Pb ages of zircons from ophiolite and related rocks in the Kumishi region at the southern margin of Middle Tianshan, Xinjiang: Evidence of Early Paleozoic oceanic basin. Acta Petrologica Sinica, 27(1): 77-95 (in Chinese with English abstract)
Yang M, Wang JL, Wang JQ and Dang PF. 2012. Studies on geochemistry, zircon U-Pb geochronology and Hf isotopes of granite in Wangfeng area at the northern margin of Middle Tianshan, Xinjiang. Acta Petrologica Sinica, 28(7):
(in Chinese with English abstract)
Yang TN, Li JY, Wen ZT, Feng XF, Wang Y, Sun GH and Gao LM. 2004. Ductile shearing zones occurring along the northern and southern boundaries of the Central Tianshan Block. Acta Geologica Sinica, 78(3): 310-318 (in Chinese with English abstract)
Yang TN and Wang XP. 2006. Geochronology, petrochemistry and tectonic implications of Early Devonian plutons in Kumux area, Xinjiang. Acta Petrologica et Mineralogica, 25(5): 401-411 (in Chinese with English abstract)
Yin A and Nie S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A and Harrison TM (eds.). The Tectonic Evolution of Asia. Cambridge: Cambridge University Press, 442-485
Yuan HL, Gao S, Liu XM, Li HM, Günther D and Wu FY. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry.
Zeh A, Gerdes A, Barton J Jr and Klemd R. 2010. U-Th-Pb and Lu-Hf systematics of zircon from TTGs, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): Constraints for the formation, recycling and metamorphism of Palaeoarchaean crust.
Zhang B, Zhang JJ and Zhong DL. 2010. Structure, kinematics and ages of transpression during strain-partitioning in the Chongshan shear zone, western Yunnan, China.
Zhang JJ. 1999. Indicators for syntectonic granites in large scale strike slip zone.
Zhang JJ, Zhong DL, Sang HQ and Zhou Y. 2006. Structural and geochronological evidence for multiple episodes of deformation since Paleocene along the Ailao Shan-Red River shear zone, southeastern Asia.
陈义兵, 张国伟, 柳小明, 熊小林, 袁超, 陈林丽. 2012. 中天山巴仑台地区变形花岗岩类LA-ICP-MS U-Pb年代学及其构造意义.
邓松涛, 郭召杰, 张志诚, 廖国辉. 2006. 南天山中段桑树园子韧性剪切带的形成时限及其构造意义.
董云鹏, 周鼎武, 张国伟, 赵霞, 罗金海, 徐静刚. 2006. 中天山北缘干沟蛇绿混杂岩带的地质地球化学.
高俊, 龙灵利, 钱青, 黄德志, 苏文, Klemd R. 2006.
高俊, 钱青, 龙灵利, 张喜, 李继磊, 苏文. 2009. 西天山的增生造山过程.
韩宝福, 何国琦, 吴泰然, 李惠民. 2004. 天山早古生代花岗岩锆石U-Pb定年, 岩石地球化学特征及其大地构造意义.
贺振宇, 张泽明, 宗克青, 王伟, 于飞. 2012. 星星峡石英闪长质片麻岩的锆石年代学: 对天山造山带构造演化及基底归属的意义.
黄岗, 贾振奎, 李怀敏, 王新录, 郭俊. 2012. 中天山早奥陶世弧岩浆岩的确定——来自桑树园子一带花岗质片麻岩年代学和地球化学证据.
李秋根, 刘树文, 韩宝福, 张健. 2003. 新疆中天山东段元古代变质沉积岩的Nd同位素特征及其对物源区的制约.
李秋根, 刘树文, 宋彪, 王彦斌, 陈友章. 2008. 中天山东段中元古代晚期-古生代构造-热事件: SHRIMP 锆石年代学证据.
林彦蒿, 张泽明, 贺振宇, 董昕, 于飞. 2011. 中天山北缘华力西期造山作用——变质岩锆石U-Pb年代学限定.
刘树文, 郭召杰, 张志诚, 李秋根, 郑海飞. 2004. 中天山东段前寒武纪变质地块的性质: 地质年代学和钕同位素地球化学的约束.
舒良树, 夏飞雅克, 马瑞士. 1998. 中天山北缘大型右旋走滑韧剪带研究.
舒良树, 卢华复, 印栋豪, 王博. 2003. 中、南天山古生代增生-碰撞事件和变形运动学研究.
唐渊, 尹福光, 王立全, 王冬兵, 廖世勇, 孙志明, 孙洁. 2013. 滇西崇山剪切带南段左行走滑作用的构造特征及时代约束.
唐哲民, 蔡志慧, 王宗秀, 陈方远. 2011. 中天山东部南北两缘韧性剪切带变形特征.
王行军, 王根厚, 专少鹏, 李广栋, 王德强, 吴连亨. 2011. 中天山晚奥陶世碰撞造山: 来自变质花岗岩地球化学及年代学证据.
许志琴, 李思田, 张建新, 杨经绥, 何碧竹, 李海兵, 林畅松, 蔡志慧. 2011. 塔里木地块与古亚洲/特提斯构造体系的对接.
杨经绥, 徐向珍, 李天福, 陈松永, 任玉峰, 李金阳, 刘钊. 2011. 新疆中天山南缘库米什地区蛇绿岩的锆石U-Pb同位素定年: 早古生代洋盆的证据.
杨猛, 王居里, 王建其, 党鹏飞. 2012. 新疆中天山北缘望峰地区花岗岩的地球化学、锆石U-Pb年代学及Hf同位素组成研究.
杨天南, 李锦轶, 文中田, 冯晓飞, 王瑜, 孙桂华, 高立明. 2004. 中天山地块南北两缘的韧性剪切带.
杨天南, 王小平. 2006. 新疆库米什早泥盆世侵入岩时代, 地球化学及大地构造意义.
张进江. 1999. 大型走滑带内同构造花岗岩的判别标志.
张进江, 钟大赉, 桑海清, 周勇. 2006. 哀牢山-红河构造带古新世以来多期活动的构造和年代学证据.

我要回帖

更多关于 变形计 的文章

 

随机推荐